수학에서 개념공부란 어떤걸까
항상 말하는 수학에서의 개념공부란 대체 어떤걸까, 많은 사람이 강조하는 개념공부에 대해 알아볼게요.
우리가 수학시험에서 문제를 못 풀때, 혹은 시간이 부족하여 풀지 못할때 그 이유는 무엇일까, 쉬운 문제건 어려운 문제건 모든 문제는 풀이에 대한 단서를
갖고 있습니다. 문제집에서 단원을 구별하여 각 단원에 맞는 문제가 나오면 잘 푸는 학생이 모의고사로 나올 경우 잘 풀지 못하는 경우가 많죠, 이건 그 학생은 문제가 요구하는 풀이를 잘 읽어내지 못하기 때문입니다. 문제에 숨겨진 풀이에 대한 단서들을 읽어내서 필요한 교과 개념을 떠올리고, 그중 조건에 맞지 않는 풀이, 답을 구할 수는 있지만 과정에서 시간이 오래걸리거나, 실수 할 여지가 많은 풀이, 등을 제외하고 가장 적절한 풀이법을 떠올려서 풀 수 있는 능력이 바로 개념을 다진 후에 얻는 능력입니다. 문제집에서 단원을 구별한 상태로 출제된 문제를 잘 푸는 학생은, 문제가 요구하는 풀이를 생각할 필요가 없는 거죠. 단원명에서 풀이법을 얘기하니까요, 어떤 문제는 아예 유형별로 문제를 구분해 놓았기 때문에 더욱 이 부분을 고민할 필요가 없이, '아 이 문제는 고차식의 인수분해에서 인수정리를 이용하여 인수분해하는 문제구나'를 알게 되죠. 개념을 제대로 다진다면, 문제를 보고 인수분해를 해야하는데, 고차식이니 보통은 인수정리를 활용하여 인수분해 한다는 사실 을 개념공부를 통해 알고 있기 때문에 대입하여 식의 값이 0이 되게 하는 값을 찾는 것으로 문제풀이를 시작하게 됩니다.
결국 개념을 다진 상태란 무엇인가? - 문제에서 요구하는 교과개념을 떠올리고 실수 없이 풀어낼 수 있는 능력을 다지는 공부입니다. 한 문제에 대한 풀이법은 여러개가 나올 수 있고 1.그것들을 모두 떠올리기 그리고 2. 가장 적절한 풀이를 골라내는 능력을 갖춘 상태라 할 수 있습니다. 때문에 개념공부에 있어서 문제를 뺴놓고는 논할 수 없죠. 개념을 공부한다는 것은 교과내용을 모두 숙지하고, 이 내용에 맞는 기본문제들을 풀어보고 연결지어 수학개념에 익숙해지는 것이라 할 수 있습니다. 여러분이 개념서를 선택할 경우 주의깊게 보아야 하는 부분은 개념에 따른 문제들이 난이도와 유형의 다양성이 개념에 대해 충분히 숙지할 수 있는 지를 파악하여 선택해야 합니다.
개념공부를 할 때는 그저 개념설명을 읽고 문제풀고 안 풀리고 어려운 문제 체크하는 것이 아니라, 문제를 보면서 개념이 어떻게 적용되는 지를 계속 눈여겨 보면서 익숙해져야 합니다. 또한 한 단원이 끝나면 개념과, 그에 해당하는 문제를 1:1로 연결지어 개념이 문제속에서 드러나는 양상들을 외우시는 것이, 이후에 시험에서 새로운 유형의 탈을 쓰고 출제되는 문제들 속에서도 출제자가 깔아놓은 단서들을 캐치해 내는 능력을 키우는 데 도움이 됩니다.
이렇게 개념과 문제가 매우 끈끈히 연결되어서 한 개념을 떠올리면 관련 문제들이(가급적 기출문제들로) 떠오르는 수준에 이른다면 개념이 훌륭히 다져진 상태라고 볼 수 있습니다. 이후에 해야하는 공부는 이것들을 계속 반복하면서 더 빠르고 정확하게 문제 속 힌트들을 읽어내는 공부를 해야합니다. 이 경우 많이 활용하는 것이 기출문제죠
이건 수능 기출문제를 반복해서 풀어봄으로써 출제자들이 문제 속 힌트들을 숨겨놓는 방식과 개념을 물어보는 방식 등에 익숙해지기 위함입니다.
아직 개념을 다지고 있는 분들은 그저 개념설명 읽고 문제풀기 만을 반복하기 보단, 그 둘간에 연결과 문제속에서 개념을 물어보는 방식을 통해 이 개념은 문제에서 어떤식으로 출제되더라, 에 익숙해지는 공부를 하시면 개념이 잘 정리될 겁니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오늘도 쪽지 환영.
-
소신발언 1
오늘 좀 춥긴 했어
-
ㅇㅈ 2
압정
-
심히 잘못된 것 같은데
-
밤샐까 6
중요한 이유가 생김
-
민철쌤 3
절대×16787 인강 안찍을거고 성형할거라 얼공안한다했는데 다 해버렸네
-
ㅇㅈ 10
에도 없다!
-
텔그 살말 0
진학사랑 고속 샀는데 텔그까지 사는거는 좀 과소비겠죠?… 지금 텔그 사신분들...
-
표본이 많으면 컷 예측의 정확도가 높아지죠. 그러나 선택과목 체제로 바뀐 뒤에는...
-
길 창나는건가
-
ㅇㅈ 4
원점
-
법조항이 있어요?.
-
선착순 한명 7
김 만덕
-
아니 국숭세단정도 라인인데도 실채점나오면 확확바뀌나요?.. 상위권라인이 아닌데도요..??
-
학교 시설 보면서 감탄했는데 근데 논술 망해서 갈수없는 대학임
-
자전 84%도 너무 높다고 생각했는데 왜 더 올라가고 난리여 에반데 + 서울대
-
잘자 8
취침해야지
-
ㅈㄱㄴ 궁금 구체적으로
-
. 1
..
-
수능 준비 전에는 외국어 공부하는게 그렇게도 재밌었는데 HSK JLPT 따고싶음
-
선착순 5명 19
이미지 써드림
-
장원영 4
어케 더 이뻐질 수가 있는거지 ㄷㄷ
-
수학 개조졌는데요… 국어는 가채점 상으론 95 인데 문제 푼 기억으론 98 입니다…...
-
걍 경외심느껴짐 성모병원 지하 편의점에서 다같이 아이스크림 사먹는데 그것조차 멋있어보이더라
-
그때 훈도 듣는데 갑자기 박광일 깜빵 소식 나와서 김승리의 훈련도감 네일아트?...
-
이거 문이과 상관없이 어디까지 더ㅣ나요..?ㅠㅠㅠ
-
본관도예쁘고 본관에서바라본경치(경희대치대아님)도예뻐요 평화의전당은경희대의자랑...
-
걍 베이스 자체가 딸리는거같은데 누구들어야 좋을까요 이명학 듣고 이번수능 ㅈ됨
-
ㅈㄱㄴ
-
종강을 바란다
-
편의점 켘 추천좀 아님 낮에 살까 그냥
-
국어 언매1틀 86 수학 공1 미2 88 21 될까요ㅠㅠ 최저 걸려있어요
-
지하철 없는건 너무 패널티가 큰거 같음...
-
그분 기억하시는분 있나 17
대머리 물천열차.물리에 진심인게 ㅈㄴ 멋있었는데.
-
수시 제일 낮은데가 경상대 경영인데 그것도 안될려나
-
메가패스 가격 떨어졌으면 좋겠다 하는 사람들은 개추 0
ㅇㄷㄴㅂㅌ
-
요즘 학과 때문에 정신병 걸릴 것 같은데 문과가 이렇게 암울한지 몰랐어요 평균4등급...
-
ㅈㄱㄴ
-
이거 투가산점때문에 이런건가요.. 과탐 1+1로는 설치가기가 이렇게 어렵나
-
으으
-
소신발언 3
저는 보컬이 정주리였던 시절의 보수동쿨러만 좋아합니다...
-
https://orbi.kr/00037321694/%EC%9E%AC%EC%88%98%...
-
비오는 소리인줄 알았는데 눈 녹는 소리였구냐
-
웨 클릭?
-
100만원 또 날리게 생겼네 자살 마렵다 진짜 ㅅㅂ........
-
어차피 실채점 나오면 갈릴텐데 미리 돌릴필요가 잇을까여
-
유튭 최근기록 4
유튜브 잘 안 봄 ;;;;;;;;
-
언매 2025 올인원이랑 2026 올인원 연도별로 차이가 큰가요?
수학에서의개념은 찐빵에서의팥
팥의 찐빵은 개념의 수학인가용?
일단 닉보고 좋아요 누름