(약스압)09수능 수리가형 25번 제작원리(?)
이 문제가 어떻게 만들어진건지 제 개인적인 견해를 써보려고 해요.
이문제의 핵심적인 아이디어는 아래 그림처럼 빨간 직각삼각형을 포함하는 원이
이 구의 지름을 포함하는 원이 되기때문에 지름일때의 원주각이 직각이라는 사실을 이용하면
PR의 길이가 4라는걸 알아내는게 아이디어잖아요?(빨간직각삼각형에서의 점 Q는 점A와 같음)
문제에서 주어진 그림으로는 이걸 알아내기 어렵지만 저렇게 다른각도에서 좀더 쉽게볼수있죠.
그렇다면 이 아이디어는 어떻게 나온것이냐를 고민을 해봤는데요.
일단 여러가지 제 견해가 있는데 그중에서 대표적인것을 일단 설명드릴게요
아래그림처럼 건축분야에서 구형의 건축물이 존재하잖아요?
그렇다면 이 구형의 건물안에 사람이 들어가려면 아래 그림처럼 구체의 건물안에 원기둥 형태의
구조물이 들어가있어야되잖아요? 그래야 평평한 원기둥의 밑면을 밟으면서 사람이 움직일수있으니깐요.
만약에 저런 원기둥이 안에 없다면
사람은 아마 이렇게 되서 걷기 힘들겠죠?
그렇다면 예를들어서 지름이 4KM인 건축물을 짓는데
그안에 어떤 원기둥을 내접시켜야할지 고민해야하죠.
원기둥에 따라서 부피가 전혀 다르니깐요. 근데 이왕이면 사람을 조금이라도 더 수용하기위해선
부피가 최대한 큰 원기둥을 내접시켜야 할거에요. 쉽게말해서 지름이 4KM인 구 안에 내접하는
원기둥의 부피가 언제 최댓값이 되는지를 찾아야돼요.
원기둥의 부피는 밑면의 지름*높이니까 구에 내접하는 원기둥의 부피를 구하려면
밑면의 지름과 높이를 구해야돼요.
일단 구에 내접하는 원기둥의 밑면의 지름을 x라고 둡시다!
이 원기둥의 부피를 구하려면 높이를 x에 관해 표현해야돼요.
근데 높이 h를 바로 구할순없죠. 그러면 여기서 h를 어떻게 구할지 고민을 해야돼요.
근데 상식적으로 h는 구의 지름에따라서 전혀 다르게 표현이 되는값이기때문에
구의 지름이 4라는 사실을 사용하지않으면 절대로 구할수없죠.
근데 마침 선분AB가 밑면의 지름이기때문에 점A,B,C를 포함하는 원은 이 구의 지름을 포함하는
구의 대원이라는 사실을 알수있고 각ABC가 직각이기때문에 원주각의 성질을 이용하면
선분AC가 구의 지름이라는 사실을 알수있어요. 따라서 AC=4 이므로
피타고라스 정리를 쓰면 h=루트(4-x^2) 이에요.
따라서 구의 부피는 x* 루트(4-x^2) 이고 미분을 이용하면
이값의 최댓값을 구할수있어요.
이러면 일단 이문제의 가장 핵심적인 아이디어인 "원주각을 이용해서 지름구하기" 가
어떻게 나온건지 알게됐어요. 그렇다면 삼수선의 정리는 이문제에 어떻게 도입을 한건지
생각을 해야되는데요. 제 생각엔 이문제를 단순히 저 원주각 아이디어로만 만들면
거의 중학도형문제가 내고 수능문제가 아니잖아요? 수능형태의 문제로 만들려면
결국 정사영이나 삼수선개념을 쓰게 만들어야하는데 정사영은 적절하지않죠.
정사영시킬 대상도 딱히없으니깐요. 그러면 삼수선개념을 도입해야하는데
그러면 어떤 수직인 뭔가가 있어야하잖아요? 근데 마침 PQ가 원의 지름이니까
지름일때 원주각이 직각이라는걸 이용하면 직각을 하나 도입할수있잖아요?
그러면 자연스럽게 삼각형 QRA에 관한 값을 구하도록 만들수있는거죠.
그리고 굳이 이문제를 좌표없는 순수 공간도형문제로 만들지않고 벡터방정식을 도입한이유는
원주각 풀이외에 계산에 의한 풀이를 열어두기위해 그랬던거같아요.
원주각이 바로 보이게끔 도형을 정면으로 주게되면 난이도가 너무떨어져서 킬러로서의
역할을 하기어렵고 그렇다고 저렇게 비스듬한각도로 주게되면 원주각의 풀이를
보기가 과하게 어렵기때문에 좌표에의한 풀이를 열어둔거같아요.
점A의 좌표가 (0,2,0)이므로 평면알파의 법선벡터를 방향벡터로갖고
점A를 지나는 직선의 방정식이 있잖아요? 이 직선의 방정식과 구의 교점을 구할수있는데
그러면 자연스럽게 PR의 길이가 바로 구해져요. 그러면 원주각을 쓸필요없이 지름이 구해지구요.
그래서 이런풀이도 열어두기위해서 좌표로 굳이 만든게 아닌게 생각하네요.
물론 이것은 제 개인적인 견해일 뿐이고 전혀 다른방법으로 문제를 만든걸수도있어요.
다음번에는 지금까지 기출되었던 어려기하,그래프문제들의 출제원리에 관해 칼럼을 작성해서
올리겠습니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
합성함수에서 속함수가 역함술때 원래함수 그래로 그리고 xy바꿔서 축 맞추기 캬
-
천국의계단 10단계 20분 ㄱㄱ 사람죽어요
-
살찌워보자~~
-
비독원듣는데 본인이 누가 그렇게 말한거 봤다면서 말하시던데 실전에서 하기엔 좀...
-
하아ㅏㅏ... 건대보다 낮은취급 당할까봐 쫄린다 ㅜㅜ
-
갈비ㅇㅈ 17
냠
-
키 174 몸무게 47 키빼몸하면 127나옴
-
카케구루이 트윈만 애니로 조금 봤는데 이게 고등학생들 맞나 ㄷㄷ
-
보이스톡걸었는데 걔도 취해있었음 말깠었는데 기억못하는듯?
-
꿈속에서 설대 자유전공이 치대랑 약대가 된다고 들은 것 같은데 3
진짠가요 그리고 왜 이딴 걸 꿈으로 꾸는 거지
-
끝나자마자 봤는데 ㄹㅇ 자살 마려웠음
-
술주정해본 적 있음
-
부모님이 산거 봤다가는 뭐라 하실지 모르겠어서
-
전 24수능때 과탐한거...
-
구라 같지? 9
각오해^^
-
네......
-
조카가 생기기 시작함.... 나도 돈 뜯길 날이 얼마 안 남았구나
-
70+가 사람임????
-
예를 들어서 아버지로부터 저런 사업장 물려받으면 나중에 결혼해서도 부모님 직접 모셔야한다vs아니다
-
세뱃돈을 받았다 2
물론 나도 동생들한테 줬다.. 그리고 이제 고1 올라가는 사촌 동생의 통합과학 과외...
-
천만덕 가쥬아
-
밀주일 정도 쓰니 쪼까 싫증 나네
-
여친 ㅇㅈ 6
-
美 법무부, 트럼프 수사 검사 12명 ‘무더기 해고’ 1
[앵커] 취임 일주일을 넘긴 트럼프 미국 대통령, 거침없는 행보를 이어가고...
-
갤탭 사야지 4
s10+가 12.4인치던데 이정도면 필기하는데 불편함은 없겠죠?
-
어캐하죠
-
. 2
-
엄마 아빠는 각자 부모님 집으로 가라 자신도 자신의 부모 집에 있겠다 발언하며 엄마...
-
레어사요 7
레어사요...
-
원래 모르는건 2번찍기로 결심햇엇는데(정치x) 공통 답배치가 생각보다 너무 고른거임...
-
어휴 정보만얻고나와야지
-
노병은 죽지 않는다 13
나 공부 시작함 치타 달립니다 딱 대세요
-
이빌트원 레어 가져갈거면 둘다 가져가라고
-
세젤쉬 공통-쎈 이후에 알텍 들으면서 빡t 커리 탈 예정이었는데 정병호 괜찮다는...
-
양가합쳐서30이최대였음 올해는 10 언더일예정
-
첫 풀이 2000덕 드리겠습니다!
-
방금 확인해봤는데 가셨네요..요즘 우울해 보이시던데 행복하시길 바랍니다.
-
3단으로 만들어야지 헤헤
-
운동을 잘 못 했군...
-
흠 열심히 해야겠네
-
설날 분위기를 깨고싶지는 않아..
-
행복하세요,, 6
-
https://leftvalues.github.io/
-
기후파트까지 했는데 지리 관련 한반도 모양밖에 모르는 본인이 듣는건 아닌거같다는...
-
새뱃돈 8
나만 못받았네. 세배를 안했으니깐 당연한건가
-
오늘오전에 4
센츄 교통카드 샀음 오면 후기올려봄
신기한거같아요 ㅋㅋ
분석은 추천!
감사합니다!
이런거 개좋음 꿀잼
저도 알아가면서 정말 재밌었어요 ㅎㅎ