수학 그 자체! [781470] · MS 2017 · 쪽지

2018-01-16 00:32:17
조회수 4,839

확통 어렵나요?

게시글 주소: https://ip1ff8si.orbi.kr/00015446417

학생들을 가르치다 보면 확률과 통계 과목에 대해 어려움을 겪는 학생들이 의외로 많습니다. 

사실 확통은 공부하는 그 순간순간은 별로 어렵지 않습니다.

왜 그럴까요? 그것은 당연합니다.

만약 지금 중복순열을 배우고 있다면 그 공식을 그냥 적용하면 되니까요!

중복조합을 배우고 있다!

그러면 설상 활용문제라도 지금 배우고 있는 중복조합 공식 그냥 적용하면 풀립니다.

하지만 확통을 다 배우고 나서 임의로 문제를 던지면 쉽게 접근하지 못하거나 어떤 개념으로 접근해야 할 지 머릿속에서 망설이기만 하다가 못푸는 경우가 나타납니다.

이유는 바로 비슷한 내용들이 많이 있고 서로 얽혀 있는 부분들이 있는데 그것을 구분지어 생각하지 못하기 때문이 아닌가 생각합니다.


그러면 구지 내용들을 구분하거나 나누어 생각하지 않는다면 쉽지 않을까요?


전 여기서부터 확통을 시작합니다.

확통이란 과목의 중심이자 메인은 경우의 수입니다.

이 경우의 수를 예를 들면 비슷해 보이지만 다른 것 같은 내용들이 연속적으로 계속 나옵니다.

그러면 문제를 풀 때 어떤 것을 적용해야 할 지 고민될 때가 많습니다.

중복조합인가? 그룹분배인가? 아님 집합분할? 자연수분할?

예를 들면 이런 식으로 말이죠...


그래서 확통은 전체를 볼 수 있는 안목이 중요합니다.

숲에 가서 나무, 꽃, 생물 등 각각을 보고 느끼는 것도 중요하지만 그것을 품고 있는 전체에 대한 조화로움을 감상하듯이요.

즉 경우의 수란 것도 뽑고 나열하고 하는 것으로 그 본질은 다 같은 것인데 구지 구분 지을 필요가 있을까요?

각각의 개념들의 뿌리인 본질을 찾아내고 그 본질로 엮여 있는 전체를 볼 수 있게 된다면 이전보다 많이 보는 안목이 넓어지고 쉽게 느껴지게 될 것입니다.


개념끝내기(개끝) 확통은 개념이 제대로 정립되지 않은 학생들과 확통을 처음하는 학생, 확통이 약한 학생들이 확통을 새로운 시각으로 바라볼 수 있게 접근법 위주의 강의로 빠르게 정리할 수 있는 강좌입니다.(총 16강 완성입니다^^)

그리고 수업 교재와 동일한 내용의 숙제 교재를 통해 한 번 더 연습할 수 있도록 하였습니다.


이제는 더 이상 확통에 발목잡히지 않도록 확통 해방을 위해 가~즈아!


오티 영상입니다.

http://class.orbi.kr/class/1347/aqua/28190/



궁금하신 점이나 문의사항 있으시면 게시판이나 아래 연락처로 문의 주세요^^

이메일 : pwt2000@hanmail.net

연락처 : 010-5637-2350(박원태 선생님)

0 XDK (+0)

  1. 유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.