극값의 정의가 ㅜ
f(x)<=f(a) 이면 x=a에서 극대가 된다고 한다.
책에 나와있는 극값의 정의인데요.
등호가 빠져야 하는 것 아닌가요?
글고, 제가 항상 수학공부할 때, 말 하나하나 따져보는
습관이 있는데요. 빨리빨리 진도나가고 싶은데,,
하나 걸리는게 있으면 그걸 확실히 알아내기 전까지 못넘어가요 ㅜㅜ 미치겠네요.
별 쓸데도 없는 내용가지고 시간만 잡아먹는데 어떻게 하면 좋을까요 ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
하 나만 그런가
-
"정상화" 3
이거거든
-
ㅇㅈ
-
진학사 2칸 0
1칸은 걍 돈낭비라고 하던데 2칸은 지를만한가요?
-
정시로 14명 뽑음 5일넘게 실제지원자 중 1등인데 이건 최최최악의 경우로 폭나도 붙겠죠…?
-
낙지 이건 뭐냐 2
-
지금 초록색 젤 뒷자리라 이렇게 된건가..? 진짜 눈물 나네 ㅋㅋㅋㅋ 나군...
-
474 0
아몰랑 표본분석 귀차나
-
정경대 드가자
-
예나 3
부리
-
원광한 왜 이월인원 반영 안한거 같지 지금 34에서 38명 되었어야 하지 않음?
-
조선약 우석약 상지한 지스트 이렇게 쓸듯
-
ㅈㄴ 의심스럽다 3칸 4칸만 뜨다가.. 이새키들 다 어디갔어
-
너무 난잡한거 별로고, 체계적인거 좋아하는데 둘 중에 누가 더 그런 스타일인가요?...
-
낙지 뭐냐 0
고대 대다수 과에서 칸수 올랐는데 이거 믿어도 되는거죠??
-
666 3떨이면 0
개에바죠? 그럴 일 없겠죠?
-
5칸인 5,6개과 표본분석해보면 다 제 앞에서 끊김 과가 다 9~11명정도 되는...
-
하아
-
아니 낙지 3
서강대 컷 저게 정상이라고요?
-
난 맨날 그러던데 똥글 쓰면 맨날 한두명씩 팔취되어잇음
-
으아아아아아아악 ㅠㅠㅠㅠ
-
꽉잡아 올라간다!!!
-
님들은 어디 갈거같아요?
-
오늘의 진학사 8
-
국어학원 다니면서 따로 국어공부도 함? 뭐뭐함?
-
저거 추불은 누가 침공해서 그런거긴 한데 이정도면 쓸만하겠죠? 지방약임
-
저리 꺼져 미친놈들아!!!!!!!!!
-
칸수 이게 최선이야?
-
등수 보고 기대햇는데 그냥 표본텅이었던걸로
-
그래 미련도 안가질게~
-
진학사 떴다 0
9:45 업뎃
-
제발 재밌는 것 좀 많이 나왔으면
-
컷이 2점넘게 오름.. 아
-
막 똥글 싸자마자 ㅇㅇ님이 회원님을 팔로우 취소하였습니다. ㅁㅁ님이 회원님을 팔로우...
-
외대어문탈출하려고n수했는데 결국 실패했네요 현상황에서는 1. 가고싶은 학과 가는...
-
갓 학 사 불평해서 미안하다!!!
-
사실 지금까진 먹었는데 오늘은 좀 귀찮네요
-
오 올랐다 4
상지한 4->5칸
-
민 족 고 대
-
구경할 수 있겠군요 잼잇겟다
-
8칸 다음은 4칸이야
-
46분이잖아 1
문열어
-
가야겠지?
-
요즘 볼만한 거 머있지
-
나는 관련 없는 이야기 히히
미분했을때 a중심으로 기울기가 +에서-로바뀌거나 그반대면 극값같는거 맞는것같은데요;;
그책이름이뭐에요? 아니뭐 그냥 궁금해서요 ㅎ
수학적인 엄밀한 정의는 적으신 내용이 맞습니다. 즉,
[정의] 어떤 δ > 0 이 존재하여, (a-δ, a+δ) 위에서 f(x) ≤ f(a) 가 성립하면 x = a 를 함수 f의 극대점이라고 하고 f(a)를 함수 f의 극대값이라고 부릅니다.
극소값 역시 마찬가지로 정의됩니다. 그리고 더 나아가서 일반적으로 수학 분야에서는 증가함수나 감소함수를 정의할 때에도 역시 부등호에 등호가 들어갑니다.
(그래서 등호가 빠지는 부등호로 정의되는 증감의 경우 순증가, 순감소 등의 용어를 사용합니다.)
고교과정에서 어떤 식으로 이런 개념을 정의하는지 제가 잘 기억하고 있지는 못하지만, 설사 다르게 정의하고 있다고 해도 그 정의가 고교과정 이외에서 쓰이는 것을 저는 본 적이 없네요. -_-;;
사실 이론 분야에서 만나는 수많은 함수들은 너무나도 기괴한 행동을 보이기 때문에, 증가상태에서 감소상태로 바뀐다는 식의 정의로는 다룰 수 있는 함수가 너무 부족합니다.
예를 들어서 그 어떤 점에서도 증가상태나 감소상태가 아니고 그 어떤 점에서도 미분 불가능하지만 모든 점에서 연속인 함수가 존재합니다.
이러한 함수의 예는 비단 순수수학에서뿐만 아니라 경제학에서의 주가 변동 모델이나 물리학 등에서의 브라운 운동의 수학적 모델 등에서도 찾아볼 수 있습니다.
때문에 이론에서는 가능한한 우리가 상상하는 개념을 수학적으로 다룰 수 있게 다듬으면서도 동시에 가능하면 많은 경우를 다룰 수 있도록 최대한 약한 정의를 사용하려고 합니다. 그래서 등호가 들어가는 것이지요.
사실 '상수함수는 모든 점이 극대점이고 극소점이다' 와 같은 몇몇 극단적인 케이스만 납득하고 넘어간다면, 주어진 정의는 등호가 빠진 정의외 크게 다를 바가 없기도 합니다만... -ㅅ-;;
음.. 결론만 보면 극값이 맞아요.
제가 고등학교 교과서에서 본 극값의 정의는 '증감이 변하는 점' 이구요
대학교1년 Calculus 책에서 본 정의는 Local Maximum(Minimum) 이라구 임의의 구간을 잡았을 때
구간내에서 최대(소)가 되는 점을 극값으로 정의해요. 여기서 구간을 +-무한대로 잡으면 극대값=최대값이 되겠죠??
보신책에서는 구간을 제대로 안잡아놓고 그냥 써놓은거같은데 극값⊃최대(소)값 이니까 틀린표현은 아닙니다