lim a->0+일때 f(a)-f(0)/a와 lim a->0+일때 f'(a)의 차이
(다시 치기 힘들어서 전자 후자로 줄일게요) 전자는 우미분계수를 뜻하는 말인데 후자는 고교과정내에서 다른 명칭이 없나요?
전자의 좌극한값과 우극한값, 함숫값이 모두 같으면 이 함수는 a에서 미분가능하잖아요.
근데 후자는 우극한값 좌극한값 함숫값이 모두 달라도 이 함수는 f'(a), 즉 도함수의 a값이 존재하니까 원함수는 미분가능 하다. 맞는 말인가요?
예전에 인강 들으면서 유제에 도함수 그래프가 주어져있는데 도함수의 그래프가 x<=0일때 y=-x,x>0일때 y=-x-1 이런 꼴이였는데 인강 쌤은 이게 도함수의 함숫값이 존재하므로 원함수는 0에서 미분가능하다고 하셨습니다.. 전 이때까지 우미분계수를 도함수의 우극한으로 취급해왔거든요..근데 도함수은 불연속이라면.. 도대체 원함수 그래프가 어떻게 그려지는지 상상이 안되네요.
질문을 요약하자면 도함수가 불연속이라도 함숫값만 존재한다면 원함수는 미분가능한가, 가능하다면 이때 원함수의 그래프 개형은 어떻게 되는가.
꼭 답변해주세요..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
솔직히 현역 정시는 수시보다 높게 가면 성공아님? 12
그렇다고 해주시면 안될까요..
-
1차 세탁 시도 -> 민심 그대로 -> 패선생님 당황 -> 2차 세탁 본인이...
-
의사 망할일은없음 ㅋㅋ 13
증원된다고해도 뭐 예전만못하다정도지 여전히 고소득자일거고 일반회사원만큼 떨어질일은...
-
연애 두려운점 4
내가 한번 정을 준 사람한테서 정을 진짜 더럽게 못 떼서 ㄹㅇ 간이고 쓸개고 다...
-
질받 18
-
스울대 가고싶다 8
스울대 아니면 도저히 만족을 못하겠다
-
수능끝나고 4
할거 없는데 추천좀.. 게임은 안 좋아해요
-
대체 왜 이딴 시스템을고집하는거임? 여론조작이 하루이틀도 아니고 심하네 참
-
나두 무물보 24
-
지금 몇점 이하 안 나오면 실패한다 몇점 이상부터만 할 수 있는 일이다 이거 하려면...
-
사회나가면 중=경 이 맞나요?
-
분만과 연관된 의료분쟁시 환자에게 국가가 3000만엔 전액지원 과실있든 과실없든...
-
가채점 수능 0
아니제가 다시확인해보니까 가채점표에 지구과학 정답을 19개만 적엇더라고요… 가채점...
-
실검 11위가 애기임
-
아웃소싱 지문 -기 때문이다랑 -로 움직인다 답 어케 쓰셨나요...
-
진짜 누구보다 열심히 가르쳐줄 자신 있는데.. 여선생님만 구해요<여기서 절반쯤...
-
내가 에타에 올린 글을 릴스로 누가 퍼갔는데 조회수가 409만임 ㅋㅋㅋㅋㅋㅋㅋ 이게뭐노
-
올리는사람 고도의 문까인건가 예전에 의대얘기만 많이 했던거같은데
-
국숭라인에서 무휴반 했습니다 국어를 평소보다 못 봤지만 받아들일려고 합니다 경희대...
-
한민족의 적 이토 히로부미를 직접 사살하신 안중근 의사님 당신과 같은 분들 덕분에...
-
왜 클릭?
-
이제는 일반적 꿀은 공군 하나만 남아버린 해경, 의무소방, 의경(2015년 이후)...
-
그때 내겐 쌓기나무가 231122급 킬러였는데 뒷면이상상이안가요
-
눈 1
전자 압승
-
심심한데 4
질문받음 ㄱㄱ
-
하던 걸 못 하게 되니까 감질난다고 해야 하나... 빨리 물리 가져와
-
재밌는 사실 0
있으면 나도 알려줘봐바
-
맛있는 음식짤 2
-
사실 나는 유명한 11
호구임
-
난 똥글만 썼음 ㅇㅇ 29
진짜 존나많이 썼음 ㅇㅇ...
-
의사 7
설마 2글자만 올려도 뭔 일 나나요?
-
리젠이 없뇨 4
다시 감뇨
-
현재 재수를 준비할까 생각중인 사람인데요…..국어가 개십창이나구 수학도 그리...
-
덕코주셈 10
ㄱㄱ
-
술술 풀리는 문제를 푸는게 아닌 진짜 모르는거에대한 공부를 하다가 어느순간 머리...
-
현재메타 2
의사 vs 롤 치열하노
-
최우제 티원 나가고 11
티원산 매물중에 폼 유지 되는애들 없는데 얘는 어떨것 같냐…?
-
무도야 그립다 ..1박2일..
-
대충 뭔지 아시죠?
-
1일1똥은 부담스럽군
-
후회없이.
-
장학금 ㅇㅈ 0
네이밍이 좀 특이하긴 한데 연구소 차리고 과외 매출 탈세 1도 안하고 싹 다 신고해서 받음
-
그래도 가고 싶다... 이번 여름에 간 거의 60 먹은 노엘이 하는 하플버 콘서트도 좋았는데..
-
수열의 극한 자작 문제 15
일단 답은 4인데, 자작이긴 한데.. 명확한 풀이를 모르겠어서 올립니다 ㅌㅌ
-
팔로잉 천 빼기 90 인지라.... 딱히 잡담해제도 안함
-
눈알 빠질거 같아요 12
오늘 하루종일 기출같은거 뒤져가면서 유사문제 찾고 왔음
-
요즘 3
조금만 놀아도 너무 피곤함 나 수험생활 어케 버틴거지...
-
아이디어는 있는데 문제는 아이디어를 일러스트로 구현할 기술력이 없음... 내가...
님이예시로든걸 함수로그려보면 x=0일때 좌측쪽은 x=0에평행한꼴이고 우측쪽의기울기는 -1이죠..
선생님이 잘못말하신게아닐까요?
그니깐 y축을기준 왼쪽그래프의 x=0일때는 0 즉좌미분값0
오른쪽그래프는 x=0일때 y값이 -1 즉 우미분값은 -1
엄밀하게말하면 x=0일때 도함수값은없는게맞아요 다만 좌우로나눌땐 나뉠수있단거죠..
근데 도함수의 좌극한값이 원함수의 좌미분계수라는건 배우지 않았습니다..
혹시 수학과학생이라서 확실히 아시고 답해주시는거면 제가 잘못알고 있다는거구요..
기출에서도 풀었던거같은데 불연속이어도 원함수는 연속일수있습니다 다만미분불가능할뿐이에요
저런그래프는 충분히존재할수있습니다...
님말대로 좌식으로정리하면 결국 lxl도 구간으로나누면 +0쪽은 x이니 +1이나오고
우식으로접근하면 lxl를구간에따라나눠서 정리하면 x>0일땐 +1이잖아요
그 문제는 미분을 피상적으로 아시는 분이, 별 생각없이 만든 문제라고 생각이 됩니다.
도함수가 불연속이라도 함숫값만 존재한다면 원함수는 미분가능한가 --> 예. 반드시 미분가능합니다.
가능하다면 이때 원함수의 그래프 개형은 어떻게 되는가 -> 원함수는 연속일 뿐만 아니라, 각진 곳이 없어야 합니다.
원함수 f(x)가 구간 [a,b]에서 미분가능하다면, (보통 열린 구간으로 나타내는데 그냥 대충 이렇게 쓰겠습니다.) 우리가 친숙한 많은 경우에 그 도함수 f ' (x)가 연속이지만, 수학적으로 반드시 연속일 필요는 없습니다. 재미있는 성질이 하나 있는데, f ' 이 연속이 아닌 경우에조차도, f ' (a)와 f ' (b) 사이의 모든 값이 반드시 적절한 어떤 x (구간[a,b] 내의) 에 대해 f ' (x)의 형태로 표현이 되어야 합니다.
(따라서 작성자분 예처럼 도함수가 step 불연속인 예는 있을 수가 없겠지요.)
예를 하나 들어주시면 딱 catch 할 거 같은뎁 .. 말씀하신 형태의 함수로는 어떤 게 있나요??
그리규.. 제가 난독증이어서 그런가..ㅠㅠ
재미있는 성질이 있다며 말씀해주신 것과, 그 앞에 있는 문장이 제 눈에는 같은 의미로 보이는데 ... 무슨 차이가 있는 건가요???
원글이님의 질문을 읽어보시면
'도함수가 불연속이라도 함숫값만 있으면 원함수는 미분가능한가?' 라는 질문이
'도함수가 불연속이라도 도함수의 함숫값만 있으면, 원함수는 그 점에서 미분가능한가?' 라는 뜻의 질문일 것이라고 추측이 돼요~
도함수가 불연속이든 연속이든 그것과 무관하게, lim_{h->0} (f(x+h) - f(x)) / h 라는 극한만 존재하면 그 점에서 미분가능한 것이니까 미분가능하다 말씀드렸어요~ 즉, lim_{h->0} f ' (x+h) 가 존재하든 안 하든 상관없이 도함수의 값은 바로 앞 문장의 극한이 존재하기만 하면, 존재한다는 뜻이었어요.
그리고 예를 들어
y = x^2 sin (1/x) (x=0이 아닐때)
y = 0 (x=0일 때)
로 정의된 함수가 유명한 것으로 알고 있어요.
이 함수는 모든 실수x에서 연속이고, 미분가능해요. (원점 근처에서 마구 진동하기는 하지만, 진폭이 점점 줄어들어서 연속이고, 이 함수도 직관적으로 부드러운 함수이지요~ (부드럽다(smooth)고 하면 보통 무한 번 미분 가능하다는 뜻으로 쓰지만 여기서는 그냥 각진 곳이 없다는 뜻(한 번 미분가능하다는 뜻)으로 사용할게요)
그런데, 미분해보면 도함수는,
f ' = 2x sin (1/x) - cos (1/x) (x=0아닐때)
f ' = 0 (x=0)
이라서, x=0에서 도함수가 연속이지는 않지요.
이것이 도함수의 존재성과, 도함수의 연속성이 일치하지 않음을 보여주는 좋은 예이고요, 그럼에도 불구하고 도함수의 함수값 존재와 도함수의 연속성 사이에는 무시하지 못할만한 관계가 있기도 하다고 알고 있어요.
끝으로, 원함수의 도함수가 반드시 연속일 필요는 없다고 말씀드렸고, 따라서 도함수가 반드시 중간값 정리를 만족할 필요는 없음에도 불구하고, 실제로 도함수가 중간값 정리는 만족시킨다... 라는 것이 도함수의 재미있는 성질이라고 말씀드린 거였어요~ 즉, 도함수가 연속일 필요는 없으나 중간값 정리는 만족한다.
x^2 sin(1/x) 라는 식은 모의고사에서 만난 적이 있는 식인데, 그냥 문제 풀기에 급급하고, 맞췄다고 오답노트도 안했고
그래서 도함수의 연속과 존재로 생각해보진 못했네요 우와 진짜 신세계에요 역시 문제는 단지 풀줄 안다고 해서 다 알고 있다고 생각하면 진짜 오산이네요 ㄷㄷㄷ
신세계를 열어주셔서 감사합니다 !! 적어주신 글 두고두고 읽어봐야할듯여 ,, 데헷