[Daily OIS] 19일차 - 수학Ⅱ 2개
2022.07.17
업로드한 파일을 내립니다. 앞으로도 좋은 자료로 찾아뵙겠습니다.
감사합니다.^^
----------------------------------------------------------------------------------------------------
'올바른 『변형』이란 무엇인가?' (난이도 : 14or29번 수준)
안녕하세요? 오인수입니다.
검증된 OIS, 1~2일 간격으로 4점 문항을 올려드리고 있었습니다. (자주 만나요!ㅎㅎ)
출간된 OIS 모의고사와 단 한 문항도 겹치지 않습니다.
오늘은 먼저 교육청 문제를 올려드립니다.
20.04.24. 학평 나형 20번
(이 교육청 문항은 '어떤 조건'이 쓰이지 않았습니다.)
그래서 준비했습니다!
다 푸셨으면, 바로 다음 문제를 풀어보시기 바랍니다.
Daily OIS 19일차 - 『변형』이란?
정답은 첨부파일에서 확인해주세요.
잘 풀어보셨다면 좋아요 또는 댓글을,
앞으로도 좋은 문항을 만나고 싶다면 팔로우를 해주세요!
오늘 하루도 잘 마무리하시기 바랍니다. 감사합니다.
(가기 전에 눌러주고 가세요♥)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
미적 vs 확통 0
확통에서 3개 맞아서 재수하랴고 하는데 미적할까.. 완전 초반이랑 통계는 풀 수...
-
진성 삼엽충이라 0
Z플립이랑 버즈3 사고싶은데 몇달만 참으면 반값 될 것 같아서 못사겠다
-
역사적인 순간 ㄷㄷ
-
얼버기 0
-
작년에 스나 해보니까 ㄹㅇ 피말려서 수명깎임
-
교사 월급이 어케되남 먹고 자기에는 부족한가
-
근데 내년에도 사탐이 어려울지 아닐지는 모르는거 아님? 2
메디컬가려고 사탐하는 사람들은 그럼 확실하지 않은거에서 일단 고 이러면서...
-
으헤헤
-
여캐 일러투척 4
ㅎㅎ
-
일식이요
-
0에 수렴할까요.. 하나 고치려는 순간 종쳐서…………………. 40점 됐는데…………..
-
1년더 해야되는데 화학 1 탈출해야하나 말아야 하나 너무 고민입니다 47받는순간...
-
국수영생윤정법 87 81 2 97 89 홍대 인자전이랑 동국대 열린전공이 군이...
-
질문하는 듯 하다가 본인 or 자식 자랑만 늘어놓는 화법 정말 별로임 울학교 경비...
-
23수능 미적 6
이때 풀면서 걍 ㅈㄴ 쫄렸음 14번 얼탱이 없는애가 갑자기 튀어나왔는데 ㄷ이 진짜...
-
나이차vs외모 3
10살연상 존예vs 나이차얼마나지 않는 평범녀
-
지금 강기분 토오전반 대기번호 520번대에서 3주만에 251번으로 줄었는데 개강전에...
-
세개 다 현장 응시 23>>24=25 23수능을 넘는 수학시험은 앞으로 안나올거같음...
-
더 친절한가요 아무래도
-
생각해보셈.
-
25수능 수학 틀린 번호는 15 20 21 22 (미적) 27 28 29 30...
-
보면 사람들 물타기도 심하고 정답을 정해놓고 사고하는 것 같음
-
어문에서 경영으로 복전하는 것만큼 경쟁률이 많이 치열해요???
-
올해 수능 44166입니다 화작 미적 생명 지구이고요 중학교 때 전교 1등으로...
-
GOAT
-
이시절 수학 진짜 좆같았는데 이때(23) 비해서 요새 솔직히 많이 쉬워졌다고 생각함
-
벌륨매직마렵 2
ㅗㅇ유ㅠㅇ우우웅
-
ㅈㄱㄴ
-
질문 받음 6
고졸 일용직 걸그룹 마스터 야구 중독자 (32년 무관 팀 팬)
-
화1 3 1
화1 42점 3될까요??
-
국어 85 수학 88 국어는 수능 기조 바뀐 후로 극복이 안 되네. 수능 기조...
-
넌 수능 봐라
-
뭐하지…
-
성적...? 헤으응
-
아는 지인이 오늘 서울대 수학과 면접 봤는데 면접 방식이 수학문제 풀기라는 거...
-
얘드라 하이하잉 4
-
재수 한국교원대 삼수 약대임 ㅋㅋ 지금봐도 ㅈㄴ 올리긴했노
-
차라리 생1지1을 하는게 낳아요 문과분들도 과탐런하세요~
-
목표는 중경외시였지만 이번수능은 경북대가 최대인거같네요. 대학 가더라도 한번 더...
-
ㅊㅊ
-
고데기했다 11
흐흐
-
지방메디컬은 사탐 허용 학교가 희귀함. 몇개 있다는데 일일히 찾긴 너무 많아서...
-
걍 투과목 표점 1
떡상하게 해주세요
-
그.. 대학을 안 물어보시고 전공만 물어보셔서 대답해드렸더니 오해를 산 것 같네..
-
파이널집 들으면서 늘 그 생각함
-
ㅠㅠ 우리엄마 6평9평보고 기대 많이 하시던데 하..
-
재수하는데 빨리 사서 풀고싶음
-
진짜 개망할뻔 했네 스토브리그 보는거에 몇시간이 지나가는거야 ㅋㅋㅋ
-
일단 저는 수능이 미응시처리 되었습니다 가천대 논술은 가보고 싶었는데 아쉽네요.....
-
3학년임
내년은 오인수!!!
문제 푸는데 넘 재밌습니당 감사해욜
내년에 오인수할게욥
문제 이렇게 올려주셔서 감ㅍ사해요ㅠㅠ 오인수 때문에 화룡점정 커리에 끼웠어요ㅋㅋㅋ!!! 모의고사도 내일 사려구요!
좋은 말씀 감사합니다ㅎㅎ 화룡점정 얘기가 나와서 한 가지 말씀드리면,
화룡점정에 들어간 제 문항과 출간된 OIS모의고사는 단 한 문항도 겹치지 않습니다!
올해 좋은 결과 있으시길 바랍니다!ㅎㅎ
ㅠㅠ감사합니다
교육청은 그림판으로 풀었는데 하다보니 이게 너무 힘드네요 ㅋㅋ
1일차부터 하고 올게요..
ㅎㅎ 교육청은 『도함수의 부호변화』를 쓰지 않아서, 조금 쉬웠던 것 같아요!
학습에 도움 되시길 바랍니다.^^ 감사합니다!
아 ㄴㄴ 제 눈이 침침했던거였네요;
나나나나나나나난아나나아아나나나나
화리용점정 배너에 오인수님 참여했다는것 보고 믿고 질렀사와요
자꾸 다른 쌤 교재 언급하는것 같지만... 저도 화룡 받고 ois님 문구 박힌거 봤습니다 ㅎㅎ 곱씹어 보겠습니다 감사합니다
선생님 좋은문제감사합니다 g`x의 절댓값을 풀려면 fx의 음양을 알아야하는데 f의 근이 0,0,a이니 a가 0보다 클때랑 작을때랑 나누면 x가 a보다 클때랑 작을때랑 fx의 음양이 확실히 나뉘길래 그렇게 바로 절댓값풀고 플었습니다 근데 x=0에서도 fx가 0이라서 이부분이 뭔가 이래도되나싶긴햇습니다
그리고 질문이있습니다 사진으로 첨부할게요
이계도까지 가면 판단할게 사라져서 미적선택자한테 유리한듯하네요.
그건 도함수가 미분가능한 상황에서의 극대/극소 판정에서는 어쩔 수 없는...
(다항함수라서.. 변곡점과 비슷한 맥락이라고 봅니다ㅎㅎ)
ㅎㅎ좋은 질문이에요. g(x)는 int_0^x 형태로 '정적분으로 정의된 함수'이기때문에
g'(x)는 정적분으로 정의된 함수의 피적분함수인 |f(t)|가 되는 것입니다!
저기서 int_0^x 뒤에 나오는 식(이를 테면 |f(t)|)은 연속성만 보장되면 되는 것이고,
미분가능성이 보장될 필요는 없습니다.
(굳이 절댓값을 벗겨가며 케이스를 나눌 필요가 없다는 얘기에요!)
관련 문항을 첨부해드립니다. (출처 : 2017수능 나형 20번)
선생님감사합니다만 제가 확붕이라 int_0^x라는 용어를 모릅니다 ㅜㅜ
"인테그랄 0부터 x까지"를 말한거였어요ㅎㅎ 답변이 이해가 되셨나요!?
선생님 제가 적분쪽 개념이 부실한가 봅니다 ㅠㅠ 이해가 잘 안되는데 어느부분에서 이해가 안되는지도 모르겠습니다.. 적분쪽 개념좀 다시 볼게요
그 저거 나형 2020년거 맞나요? 2020문제 치니까 지수함수 문제나오는데..
작년 3월 모의고사가 코로나때문에 밀려서 4월에 시행되었습니다.ㅎㅎ