2014 7월 모의고사 수학B 30번 한완수를 이용한 풀이
2014 7모 수학B 30번 풀이.hwp
2014 7모 수학B 30번 풀이.pdf
한글 파일, pdf 파일 모두 준비해놨으니 필요하신 분들은 가져다 쓰세용 ^^
과외 학생에게 쓸 자료인데, 여기다가도 한번 뿌려봅니다 ㅎㅎ
잘 보셨다면, 좋아요 눌러주시면 정~~말로 감사하겠습니다. 보다 많은 사람이 봐야하니까요 ^^
p.s 들리는 썰에 따르면 평행한 면을 바로 찾거나, 법선벡터를 이용해서 풀어낸 경우도 봤습니다.
이런 경우의 풀이도 한번 생각해보시기 바랍니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
1일1똥은 부담스럽군
-
후회없이.
-
장학금 ㅇㅈ 0
네이밍이 좀 특이하긴 한데 연구소 차리고 과외 매출 탈세 1도 안하고 싹 다 신고해서 받음
-
그래도 가고 싶다... 이번 여름에 간 거의 60 먹은 노엘이 하는 하플버 콘서트도 좋았는데..
-
좌표찍고 신고원툴 의대생,의사들은 #~#
-
일단 답은 4인데, 자작이긴 한데.. 명확한 풀이를 모르겠어서 올립니다 ㅌㅌ
-
사견임.
-
팔로잉 천 빼기 90 인지라.... 딱히 잡담해제도 안함
-
정승제카메라 사줄사람 구해요..
-
눈알 빠질거 같아요 12
오늘 하루종일 기출같은거 뒤져가면서 유사문제 찾고 왔음
-
요즘 3
조금만 놀아도 너무 피곤함 나 수험생활 어케 버틴거지...
-
아이디어는 있는데 문제는 아이디어를 일러스트로 구현할 기술력이 없음... 내가...
-
어허 쯧쯔릇쯧쯧
-
역대로 안돌아가는 사례일듯 고장나서 안돌아가는 수준이 아님
-
내년에 개 많이 찔 거 예상하면.....
-
음하핫
-
인강 들으면 되려나...토익밖에 안쳐봐서 감이 안잡힘
-
내년에 앞자리 바뀌신다는 이야기 들으니 둘 다 벙찜 흠..
-
2등이면 걍 합격임? 모집인원 변동 없음
-
사실 드라마틱한건 아는데 그냥 자랑하고 싶었음
-
국어는 고정1이고 시발점+쎈>>고2자이>>한완기 평가원+교사경 >>뉴런>>n제 실모 5등급이에용
-
왜 싸운거임? 대충 상황 3줄 요약점
-
여기도 똑같은 커뮤구나 지금 알았누
-
ㅋㅋ
-
나도... 2
언젠가 채영님을 실물 영접 하는날 올까..
-
나였으면 벌써 롤 친구부터 끊었음
-
같이 밥먹을사람이없고, 얘기할사람이 없다는건. . . ㅜ 딱나네
-
난 어차피 그곳에 있는게 제일 중요해서 선예매는 실패했으니 스탠딩 앞번호대는 다...
-
화1 20번/생1 17번 손해설(필요할지는 모르겠지만) 0
이제와서 올리는게 의미있나 싶지만 과외구하면서 쓴거라 한번 보고 피드백주세용 해설지...
-
영어를 못하는 예비고3인데요(고2 모고3-4, 3학년 10모 3등급이요 . ㅠㅠ),...
-
지금라면먹으면 2
내일 안부으려나
-
빈지노는신이야 6
빈지노로 가득 찬 플리와 함께라면 가능이야
-
ㄹㅇㄹㅇ
-
하......
-
기출문제집 해설은 어차피 안보게 돼서 문제 선별이랑 종이질 기준으로 찾다보니 젤...
-
다른 커뮤에서 미적2틀 88이 2등급이라는데 그말만 하고 사라져서.... 구라겟죠?
-
학년에서 몇안되는 백점 받음 ㅎㅎ 후후 발표 코칭도 해줌
-
미적은 시발점 돌리는 중이고 26 버전 나오면 공통이랑 미적 다 빌드업 들을...
-
저 착해요 5
그렇죠!!??
-
한 십만원 필요한데
-
방금 핫도그 먹으면서 기분 개좋았다가 대학 예비 아직 받지도 않았는데 예비 너무...
-
진짜 세상에서 제일 애매한 내신이 3점대 중후반이라고 생각하고 시험도 거의 끝나가서...
-
내년에는 뭔가 잘볼수 있을거같음 올해 수능에서 껍질을 벗은느낌
-
여캐 일러 투척 4
큐어 라파 파
-
일반전형만 조사했고 지역인재는 제외했습니다 본인지역만보면 몇개안되니 직접 찾아보세요...
-
이거 맞다.
-
일본어 기본으로 깔고 지2or기하or확통 고민중인데 뭐 해야하지
-
나무위키 실검에 왜 뜨는지 했더니 푸스때문에 진짜 신곡낸다고 반응 안좋았는데 진짜 다 내려갈줄이야
이 문제를 정사영해서 이면각구하셨다는 말씀인가요 ??
저는 어차피 이면각을 구하는 거니까 원기둥에 생긴 면을
정육면체로 끌고 내려와서 매치시키니까 정사면체 이면각과 똑같길래 정말
1분컷으로 풀었었는데;;
그렇게 푸는 것이 가장 빠르다는 것은 인정합니다. 제 풀이법은 일종의 대체재 성격을 띄는 풀이입니다. 시험장에서 평행한 면을 보지 못했을 때를 대비한 풀이라고나 할까요 ㅎㅎㅎ 만약 시험장에서 교육청의 풀이법이 안보였다면 어떻게 하면 좋을까라는 발상에서 만든겁니다.
아... 공간도형 문제는 풀이법이 다양하니 님의 풀이도 공부해봄이 좋을듯싶네요 감사합니다ㅋㅋ^&^
단면화 과정이 전혀 이해안되네요 저렇게 단면화 된다는 보장이 있나요? 코멘트없이 쓸 정도로 전혀 자명해보이지는 않네요
평면을 하나의 직선으로 보는 것의 단면화의 핵심입니다. 세개의 평면 중 어느 하나라도 평행한 평면이 없고 공통 교점을 가지는 평면이 없다는 것은 그림으로보면 너무 자명한 사실이구요 그래서 저렇게 삼각형 모양으로 단면화해도 문제없습니다
아무튼 좋은 의견 감사드립니다 ^^
저두 ㅎㅎ 그냥 길이 적어보니까 맞는거같아서
좌표풀이 만사형통
법선벡터의 각!
닥 외적
외적 몰라요ㅠㅠ
님처럼 수학 잘하면 수학 엄청 재밌을 듯 ㅜ
문과라서 무승 말인 지 하나도 모르지만
좋아요 누르고 가요!ㅋㅋㅋ
이분참 재미지단말이야 ㅎ
이렇게 단면화 시키려면 먼저 세 평면이 공통교점을 가지지 않는다는 것과 한 평면에서의 법선벡터가 나머지 두 평면의 교선에 수직한다는 점을 먼저 증명시켜야 단면화논리가 성립함.(작년수능 29번문제하고 같은 논리) 이거 먼저 언급하고 적용하시면 완전한풀이가 될 듯
좋은 의견 감사합니다 ^^
위위위에 댓글에 이미 단면화 논리 알고 계셨군요 ㅎㅎ
일단 댓글 써놓고 단면화 되는지 확인해 보니까 이분말대로 공통교점있고 법선벡터가 나머지평면 교선에 수직하지도 않네요 이거 단면화 논리 오류인듯
공통교점은 점 D라고 나오는걸 봐서는......
시간이 많이 남아거 영혼없이 평방 구했네요 ㅋㅋ
단면화를 하려면 두 면의 교선이 점으로 보이는 시점에서 두 면을 직선처럼 보는건데
저 그림대로라면
면 DEG와 밑면과의 교선,
면 PQR과 밑면과의 교선,
면 DEG과 면 PQR의 교선
이 세개의 교선이 평행해서 한점으로 보이는 시점이 있다는 건데 실제로는 교선들이 평행하지 않으니 문제풀이에 오류가 있다고 생각합니다.
걍좌표로풀고 외적써ㄷ
넘 오래걸려요 ㅠㅠ
외적 굳ㅋ 2분컷
정말 문과와 이과는 종이 1억장 차이다
그럼 이 문제를 단면화로 푸는건 논리적 비약이 있다는건가요?? 어떻게 답은 맞는건지요?
저는 정사영을 2번하는 방식으로 풀었는데 어떻게 생각하시나요?
그냥 넓이에다가 코사인세타1과 코사인세타2를 곱해서 1/3값을 곱했는데 답은 맞았거든요
저 교육청풀이가 cp를 이용하여 푼거아닌가요
저도 저렇게풀엇는데..
제가 머리가 나빠서 논리적으로 맞지않다고 생각하는건진 모르겠는데, 답만 옳게나오는 짜맞추기풀이아닌가요?
저거 단면화과정 없어도 괜찮지않나요? 어째선지 저방식하고 비슷하게 그냥 cos세타1 cos세타2 구해서 두개 덧셈공식해서 구했었는데...
그냥 잘못 푼 거 같기도 해요. ㅠㅠ
코사인세타1오타잇으세요 DI/IH ---> IH/DI
네 확인했어요 ㅠㅠ 죄송합니다