칼럼) 수1 도형 특강 _ 기복없이 반드시 푸는 법
수1 도형 특강 .pdf
도형 특강을 필두로 수학 칼럼을 계속 게재해볼 생각입니다!
아마 투표 결과에 따라 다음 주제는 '합성함수 그리기 with 킬러 문제' 가 될 거 같네요.
파일로도 올리고, 여기에 사진으로 옮겨 붙여 설명도 덧붙일게요.
그럼 각설하고 시작합시다. :)
----------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------
---------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------------
잠시 덧붙이자면, 절대 잊지 마세요!
[ 요소들의 관계 = 그 법칙을 사용가능한 곳 } ---> 정말 중요합니다.
-------------------------------------------------------------------------------------------
---------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------
엄밀히 따지자면,
도형을 '이 방법'을 쓰면 무조건 풀려! 라는 말이
어떤 풀이를 하더라도 이런 논리구조를 따르면 된다는 뜻인거죠.
도형 공부는 마치 국어 공부처럼 해도 안 느는 경우가 허다합니다.
사람의 뇌가 워낙 좋아서 하도 비슷한 문제를 풀다보면
소위 말하는 '직관'이라는 능력 때문에 마치 자신이 실력이 늘은 것처럼 보이나,
정작 직관이 발휘되어야 할 시험장에서는 쏙 숨을 가능성이 농후합니다.
이를 대비하기 위해선,
어떤 상황이 오더라도 '일관적이고 논리적으로 풀 수 있는 방법'을
여러분이 갈고 닦으셔야 합니다.
이 두 문제조차도 제 풀이보다 쉬운 풀이가 존재하는 걸 압니다.
하지만, 이렇게 풀면 절대 풀지 못할 수가 없어요.
언제나 도형 문제 푸는 데에 3~5분 걸립니다.
이정도 빠르기면 그닥 느린 것도 아니고 시험장에서 언제나 사용가능하단 측면에서
훨씬 가성비가 높다고 생각됩니다.
어떻게 도형의 성질과 여러 법칙들을 공부해야 하는지와
도형 문제 풀이 시에 따라야 하는 논리 순서를 알아봤습니다.
앞으로도 여러 주제를 다뤄볼겁니다.
도형 특강은 우선 도형 문제들을 여러분이 어떻게 공부하면 좋겠다는
방법론적 측면에서 작성했지만,
합성함수 그리기나 미분 가능성은 제가 일방적으로 제 방법을 여러분께
주입하는 형식이 될 거 같습니다.
긴 글 보느라 고생많았고, 도형 문제가 막히면 큰일나는 무서운 문제가 아닌
'시험장에서 여러분들이 숨돌릴 수 있는 쉼터'가 되길 바랍니다. :)
0 XDK (+24,000)
-
16,500
-
1,000
-
1,000
-
500
-
5,000
-
외모로 손해본 적 있냐고 먼저 물어봐야지
-
N이 커지며 실현가능성이 없다고 느낀게 03부터는 거의 졸업반이라는 사실..
-
와!!시발 513 시발
-
강민철 쌤 0
흐흐
-
외모로 득본기억 2
. . 어그로인거 뻔히알면서 왜들어옴
-
우웩.. www.instagram.com/lovely-.-v/
-
전체 기회는 4번
-
2021 현우진 피셜임 반박은 미래의 우진이 함
-
외모로 득본적.. 17
교수님하고 1대1 의무상담하는 자리엿는데 보자마자 잘생겻다 해주심 교수님 납치...
-
어떻게 써야함 지금 생각해놓은게 가 안정 651 611 다 안정 416 356...
-
합격예측상에서는 13등인데 모의지원상에서는 20등까지 밀려남뇨 이러면 내일오전...
-
등장 6
퇴장.
-
보통 표점이 비슷하려면 공통이랑 선택 실력이 비례해야하는데 통통이들은 공통 선택...
-
생각할수록 걱정됨
-
ㄹㅇ
-
3년째 미적 젤 잘한게 2틀->기하 런 서바에서도 40점대 나오던 지구...
-
ㄹㅇ
-
옛날에 2
ㄹㄹ
-
처음 개총갔을때 좀 차려입고 꾸미고 갔는데 첨보는 선배 네명이 잘생겼다고 이름...
-
아 배탈난듯 0
배아파미ㅣ친..
-
본인 재수결심하고 미적에서 확통으로 갈려함 미적 4따리인데 고민하지말고 확통이...
-
기차지나간당 8
부지런행
-
아무리 삼수생이여도 술마실 애들이 8명 단톡방 애들뿐..
-
최소 소주 한 잔씩 마시는 거 보고 아 난 헌내기일 때 새터가면 안되겠다ㅎㅎ.. 이...
-
얼버기 2
다들잘잤어요?
-
본인 ㄹㅇ 이상한 점 20
사람 얼굴을 ㄹㅇ 기억을 못함 가족이나 몇개월 이상 매일 만나는 수준 아니면...
-
투명드래곤 취급인가요?
-
오오, 그러니까, 채, 무어, 말할 새두 없이, 문이 잠구어져, 누가 오기만을...
-
본인 엠비티아이 말하는데 다른 분들이 그거 기억하는 게 ㄹㅇ 신기함 난 사람 이름도...
-
정시를 하면 눈이 끊임없이 오름 미치겟다는거임 근데 사실 정시를 시작할때부터 목표가...
-
최초합5칸 5명정원 or 추합5칸 18명정원 어느쪽이 가능성이 더 있을까요?
-
극 intp라 먼저 못다가가는 성격이면 투명인간 확정인가요?
-
375칸 vs 845칸 7,8은 똑같은 대학인데 7칸짜리 학과가 더 가고싶어요
-
귀가 먹먹해요 7
아까 세수하고 로션바르려는데 안경 낀 상태로 바르려함요 아 ㅋㅋ 빨리 자야겠다 안녕히주무세요
-
누나가 뉴욕대 유학생인데 이번에 졸업해서... 저랑 두살차이나는데 벌써 대학졸업은...
-
가천의 캠 2
가천의도 메캠에 있음? 누구는 메캠이라하고 누구는 글캠이라하고 뭐가맞음?
-
죄다 백수되거나 로씨행인데 지금 좀 많이 뽑는건 맞다고 생각 그치만 교수들 월급은...
-
우웩.. www.instagram.com/lovely-.-v/
-
거의 없으면 이게 한계치인걸까요 삼반수하고싶은데
-
질문을받을래요 19
전부답변해보겠습니다
-
책추천ㄱㄱㄱ 19
지금은 한강 - 흰 읽는중
-
미친듯이 마시는 중인데..
-
해석기하 분류 4
해석기하는 논증적으로 찾아내기 힘든 기하적 성질을 (공선점, 공원점 등등)...
-
펑크 안 나겠지..? ㅎㅎ..
-
4-5등급이 많이 듣는 강사도 n제는 어렵겠죠? N제 양치기할려고 하는데 아무거나...
-
전 되게 맘에 들어요 느낀건데 고등학교 3년은 자신의 진로를 결정하기에는 너무 짧은 시간이에요 ꉂꉂ
-
자퇴계 직접 가서 내고싶은데 우편으로 내면 ㅈㄴ 낭만없을거같음
-
현역 14244 재수 22242 (둘 다 언미물지이고 재수하면서 6, 9모 물리는...
-
기하학은 2
어떤 변환 속에서 변하지 않는 양(불변량)을 찾는 학문임. 그래서 초점을 둔 변환에...
스크랩
1등먹었다!
2시간 ㄷㄷ
수식이라서 오래 걸린…. 국어보다 수학이 훨씬 쓰기가 어렵네요…
큰거왔다! 큰거왔다! 큰거왔다! 큰거왔다! 큰거왔다! 큰거왔다! 큰거왔다! 큰거왔다! 큰거왔다! 큰거왔다!
앞으로 수학도 열심히 써보겠습니다,, 아직은 부족하지만 성장하겠습니다..!
유용하게 잘 쓸게용
사인법칙에서 예시 들 때 각 ADB 아닌가요?
헉 어디죠??
아아 찾았어요!
개추!
다 바꿨어여
더욱 정진하겠습니다
도형이 좀 그렇죠 ㅠㅠ
선생님 좋은 칼럼 감사합니당 ㅎ 중등기하를 위해서
합동 닮음 원의성질 중등문제 푸는 건 어떻게 생각하시나요!!
중등 문제는 제가 하듯이 단계를 밟으면 대개 눈으로 풀립니다. 그러니 눈으로 슥슥 풀 수 있을 정도가 되도록 중등 문제를 풀며 저 논리구조를 학습시키는 것도 좋은 방법 중 하나라고 말씀드릴게요..!
순공적립.
훌륭하네요. 이런 자료 준비하는 것은 수험생활의 정리인지 궁금하네요.
수험 생활할 때 고3 때까지 소위 말하는 대치동 학원 같은 걸 다녀보질 않아서 혼자 공부하는 시간이 많았거든요.. 그 때 얻은 것들을 공유하면 조금이라도 다른 사람들 공부가 쉬워지지 않을까 하는 측면에서 하기 시작한 일인데, 실질적인 도움이 되면 좋겠습니다... 나름 거창하게 말하면 교육평등을 이루고 싶어서이고, 간단히 말하면 잘난 척이죠...ㅎㅎ,,
훌륭하다고 해주신 칭찬 감사합니다!!
역시 선한 영향력 가진 분이시네요. 감사하게 잘 이용하고 응원할께요.
읽어주시고 이상한 점 있으면 바로 수정할게요..! 수학은 써보니 좀 어색하네요 ㅜㅜ
칼럼에서 쓰신 논리 순서가 제가 도형 외에도 킬러 문제가 막힐 때 접근하는 방법과 굉장히 비슷한 거 같네요.
삼각함수의 극한 문제에서 도형을 해석한 후 답으로 도출하는 과정만 남았을때,
극한값을 구하는 식이 너무 복잡해지면
도형을 다른방식으로 다시 해석하시나요 아니면 억지로 구해버리시나요?
네 꼭 찾아 가겠습니다 ^^7
와…지렸다….
깨달음이 있으신 것처럼 보이는데 그 깨달음이 본인에게 온전히 흡수되시길 바라요..!
감사합니다 ㅎㅎ
독존넴 질문이 있습미다 이게 도형 전범위를 다루신거죠?
수1 도형입니다..!
네넹 수1도형 삼각함수 뒤에나오는 그부분 전체용
수열도 해주세요
네..!!
헉... 개쩐다 이대로 무등비까지 올려주시면 도형은 다 족칠수있을듯..
무등비는 삼각비로 다 풀리죠 준비할게요 ㅎㅎ
항상 도형문제를 직관으로 풀어서 고민이었는데 감사합니다 정독하고 이제 적용해볼게요!
ㅇㄷ
잘 읽었습니다 감사합니다