벡터=좌표라고 생각하면 큰 낭패
[기하 선택자(또는 수리논술대비)를 위한 칼럼]
기하, 즉 도형에서 가장 중요한 것은 점이에요.
모든 도형은 점으로 이루어져 있기 때문이죠.
도형에 대한 연구는 고대 그리스 시절부터 아주 활발했습니다.
직선, 각, 삼각형, 원 등 평면도형에 대한 대부분의 성질은
무려 2천년전에 “유클리드”님이 다 정리해 놓으셨다죠.
그런데 미친넘천재 유클리드도
정의하지 못한게 하나 있으니
그것은 바로 '점의 위치'입니다.
우리가 중학교때까지 배우는 도형들은 위치가 없죠.
그냥 어딘가에 있는 삼각형, 원 이렇게 배우잖아요.
고등학교 수학에서
점의 위치를 나타내는 방법을 두 가지 배우는데,
첫번째가 좌표로 점의 위치를 나타내기
두번째가 벡터(두두둥장)로 점의 위치를 나타내기
이 두가지는 아예 개념이 달라요.
그림으로 표현하면 아래와 같습니다.
1. 점의 위치를 x, y 좌표로 나타내는 방법
익숙하죠?
모든 점의 위치를 원점을 기준으로 생각하는 것이죠.
생각해서 존재하는 데카르트님이 좌표평면을 떠올렸다네요.
2. 점을 가리키는 벡터를 이용해서 나타내는 방법
원래 벡터는 위치가 아니라 크기와 방향으로만 정의가 되는데
모든 벡터의 시점을 통일시키기로 약속하면 한 점과 어떤 벡터는
반드시 일대일로 대응이 되는거죠.
이걸 점의 위치벡터라고 합니다.
따라서 그냥 위치벡터가 아니라,
점A의 위치벡터, 점B의 위치벡터인거에요.
그럼 좌표로 하면 되지 뭐하러 굳이 왜 벡터로 점의 위치를??
이라고 생각할 수도 있겠네요? 그 이유는 뭘까요?
벡터로 하는게 편한 경우가 있어서에요.
좌표로 점의 위치를 나타내면 원점을 기준으로 해서
점의 위치를 절대적인 값으로 나타냅니다.
그런데 점의 절대적인 위치를 알고 싶은게 아니라
이 점이 쟤랑 걔 사이에 정확히 중간에 있어.
아니면 얘는 쟤랑 거리가 몇이래.
이런걸 표현하고 싶다면? 굳이 좌표가 필요없어요.
점들 사이의 상대적인 위치만 있으면 되니까요.
이럴 때는 벡터가 훨씬 편하네요.
예) 점P는 점 A와 점 B의 중점이다.
이걸
이런 식으로 표현할 수는 없겠죠?
그런데
벡터로 표현하면
이렇게 표현을 할 수 있어요.
점은 연산이 안되지만 벡터는 연산이 되니까요.
직선이나 원 같은 도형의 방정식도
위치벡터로 나타내면 훨씬 편리하답니다.
물론 벡터의 용도는 여러분의 상상 이상으로 훨씬 더 많아요.
여러분이 즐겨하는 게임에서
벡터가 광범위하게 활용되기도 하죠.
그리고 대학에서 배우는 벡터는
평면기하와 별로 상관이 없는 추상적인 개념이고....
설명하자면 끝도 없는데
일단 평면벡터만 생각해서 예시를 들어봤어요.
[결론]
여러분이 기하 선택자라면 (그래서 읽고 있겠지만)
위치벡터의 개념부터 제대로 잡고 시작하세요.
만약 위치벡터를 이해 못하면,,,
갑자기 나오는 벡터에,,, 도대체 이걸 왜 배우는건지,,,
삼각형 평행사변형, 그림놀이 열심히 하다가
갑툭튀 등장하는 내분점 공식같은걸 보면서 이건 또 뭐지...
배운건데 왜 또 나오지.... 그러다가 준킬러님 두두둥장
하시면 손도 못대는 경우가 생겨요.
기하에서는 30번 레벨 벡터문제까지
반드시 맞추도록 대비해야겠죠?
그래야 미적분 선택자에게 불리하지 않으니까요.
벡터는 확실히 잡고 갑시다!
------
여기까지는 정보성,
아래부터는 잠시 상업성을 띠는 점 양해부탁드리며...
[수업안내]
올해 기하는 수능 대비 현강이 별로 없는 듯 해요~
그래서 6평 대비 수업을 합니다!!
장소는 대치동 디오르비! 시간은 목요일 6시반부터!!
현장강의 + 라이브 입니다.
6평대비 3주 특강 <16416-기하>
이번 수업으로 기하, 특히 벡터에 대한 감이
확실하게 잡힐 거라는거 자신있게 말씀드릴게요.
지난 수업은 복습영상으로 수강가능하고요.
이번 수업 교재 뿐만 아니라 개념교재도 무료로 드립니다.
그동안 대충 알고 있던 개념을 완벽히 정리하면서
킬러가 체계적으로 풀리도록 만들어 드리는 수업이에요.
신세계를 경험하고픈 기하러는 다들 오세요.
제가 책임지겠습니다.
[16416 수강신청 링크]
https://academy.orbi.kr/intro/teacher/252/l
기하의 기초
평면도형과 도형의 방정식을 총정리하는
<아름다운 시작 - 도형>도 강추입니다!
[이승효T 특강 수강신청 링크]
https://academy.orbi.kr/intro/teacher/256/l
문의 : 디오르비 02-522-0207
칼럼이 도움되셨다면 좋아요와 팔로우 부탁드릴게요.
상승효과 이승효였습니다 :-)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㄹㅇ 내가 개구리 이미지인가 청?ㅐㄱ구리,?? 난 질문 안 원했다고
-
제가 가체점이랑 omr이랑 한문제가 햇갈리는데 진학사 가체점판 입력하면 실체점때...
-
과제함뇨 1
날 말리지 마뇨
-
도피성 수면을 아세요? 15
별게 다있네
-
ㄹㅇ이
-
책 사려고 보니까 망했네...
-
확통할걸.... 7
문돌 현여기에게 미적은 사치다
-
흐하핳 4
머리에 마구니가 잔뜩 으흐흐흐ㅡ
-
애매...한 그래도 오랜만에 강남역 가서 재밌었음뇨
-
진학사에서 서울대 내신 평가는 어떻게 적용해서 예상점수컷하고 칸수 만들어 내는 건가요?
-
아직도 적응못한나는 우울해져
-
아니 이난이도가 99는 에반거같은데
-
결과:84점(14번 20번 21번 22번) 베이스: 1. 19나형 현장40분컷...
-
보니까 나형 21이나 통합 14 이런문제 박혀있던데
-
설경이나 한의대 노리려는데 확통+원과목 조합보다 나음?
-
어제는 지브리 애니 다시보고 싶어서 벼랑 위 포뇨 조졌는데
-
세지사문 - 내신 세지는 인원수가 적어서 따로 공부할 예정 -> 처음부터 0에서...
-
머리아푸다 2
우두머리가 조직을 망치는 걸 보며 아무것도 하지 못함에 무기력하다..
-
인서타 맞팔해요 6
-
지금 수1 쎈발점 하고있고, 지금 등비수열까지 나갔습니다. 지수/로그함수까진 쎈 다...
-
살빼려고 맘먹으니 다먹고싶네
-
동대가 부럽긴 하지만 어쩔 수 없다 오전엔 낙엽쓸고 오후엔 가시나무 자름 선임들은...
-
작년 학평 5~6,7등급에서 이번 수능 4까지 올렸는데 어렵겠지만 높3~2등급이...
-
확통 2015 교육과정 2022 교육과정 차이점이 뭔가요? 개정 시발점 나오면...
-
방송보고 싶다 1
아아..
-
너무 오래잤나벼...
-
내년까지는 만점의 생각 개정판 출간 예정이 없습니다. 3
안녕하세요, 오르비에 정말 오랜만에 글을 씁니다 ㅎㅎㅎ 다들 수능 보시느라 수고...
-
살찌겠지
-
작년 11월에 쌩노베에서 시작해서 올해 수능 이정도 성적 받았습니다 재수를 하면...
-
우히히 1
-
얼부기 8
왜 하늘이 꺼멓지?
-
영화 억셉티드 (2006) 존잼임
-
영어듣기 질문 0
영어듣기 노벤데 1~17번까지 쫙 문제 풀고 그냥 1번부터 다시 들으면서 종이에다가...
-
인생망한 06 1
충남대 전남대 낮공도 불가능인가요
-
이 프사는 오랜만이네
-
고소 하지 말까 3
구라냐고 쪽지외서.. 진단서를 올릴 순 없어서 현재 정신과 진단 외상 후 스트레스...
-
종이에 적어서 풀 때 틀려서 노트에 다시 적어서 풀어보려고 했는데 계속 틀리네요…...
-
미적vs 확통 2
고2 모고 높은1 나오는 실력인데 미적, 확통중에 어떤거 해야함? 수능수학 92점...
-
흐흐
-
사람 냄새가 나 3
리쌍 좋다
-
제가 개발한 ai전기쥐가 빅데이터를 기반해 맞춤 질문이나 이미지를 달아줄거임요...
-
예비고3인데 워드마스터 수능2000이랑 하이퍼2000 있는데 두개 같이 해도...
-
희망 놓지 않고 계신가요? 전 텔그랑 고속은 나쁘지 않은데 진학사만 4칸 줘서...
-
군만두 (1판 8조각 6000원)가 기막히게 맛있더라고요
-
7연패 ㅅㅂ
-
JR 패스 삼 10
홋카이도 에서는 반 필수 인듯...
-
찬싸이언스 (인강) 에서 강의하고 계심
벡터를 변화량이라고 인식하니까 그 의미가 와닿더라고요. 생긴건 가만있는 선분인데 움직임을 표현할수있다니. 단순한 표현 하나로 복잡함을 정리하는 수학의 아름다움이 느껴집니다.
단순한 표현 하나로 복잡함을 정리하는 수학의 알흠다움. 크~
우왕 미적해야징
대박 재밌겠다... 내가 재수했다면 바로 기하했다
쪽지 드려도 되나요
네~
쪽지 답장 부탁드립니다
수학과는 사학과네요..