포몬데 포카 어디에도 해설이 없는 문제
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그리고 수능치면 다맞으면 최대 어디감? 언매 미적 정법 경제로 간다하면 베이스는...
-
맞팔9 1
ㄱㄱㄱㄱㄱㄱㄱㄱㄱㄱㄱㄱㄱㄱ빨리 해줘
-
일출 시간대인 듯요 아침 7시에 어둑어둑 수준이 아니라 어두컴컴한건 1~2월 아니면...
-
긍정적인 마인드로 351일 공부하기 오늘의 소확행 : 드디어 올해치 예비군 끝 하필...
-
ㅈㄱㄴ
-
전 주량 0.3병인 여고생이라 진짜모름
-
정법 질문 4
노베인데 12월에 코어버전 완강한개로 개강한다는데 그거로 봐도 상관없나요? 1월에...
-
전 1시간 반 ~ 2시간 하면 약간 몸이 근질근질해지면서 오르비 들어와서 눈팅하다가...
-
눈이펑펑 2
휴강하면 좋겠다
-
과제를합시다 7
D-4 근데이제 day가 아닌 h인
-
원래 73kg 였는데 학기 시작하고나서 5kg 증량되서 돼지됨...
-
지원도안해주고반대도극심하고 그냥 아무대학가라고하면 그냥포기하고 아무대학진학하세요?...
-
What's up, guys? This is Ryan from Centum...
-
근데 레즈아님 혹은 얼굴 이슈로 입밴당하겠지
-
*주의* P.I.R.A.M 국어 생각의 전개를 구매하신 분들은 2권 마지막 지문으로...
-
지금은 해설지 작업 중인데 혹시 필요하신 게 있다면 적극 반영할게요
-
일좀해라 좆성
-
1. 국어 김승리T 올오카 독서/문학 -> ~~~~ ———————————————...
-
한 4년 좀 넘은듯
-
표점 제발 142라도 주세요
-
그냥 선호도조사
-
조때따 3
갑자기 오글거리는 대사하면서 키스하네.엄마 어떠캄.
-
인생 첫 40도 위스키 도전 과연 3일 연속 술을 마신 사람은 살아남을 수 있을까요
-
사탐런 안 막으면 공대 갈거면 사문지구가 제일 낫겠죠?
-
생질 개때잡 세젤쉬 중에 수학 개념 추천 부탁 드립니다 0
수학 개념 노베이스 라서 개념인강 다시 들어야 하는데 생질 세젤쉬 개때잡 중에서...
-
왜 기억이 없지 이렇게 많이 오나 11월에
-
한 쪽 눈 초점이 안 잡힘.
-
ㅠㅠ 본1 인턴이랑 비교해주실 의사분 찾아요 ㅠㅠ
-
캬 3
대 하 니
-
설경 VS 경한 1
선호도조사 ㅇㅇ
-
십ㅋㅋ
-
그냥궁금해서
-
포케 맛있다 8
앞으로 저녁은 포케다
-
메가기준으로(96) 백분위 계산해보니까 295나와서 에피 안되네요 :P
-
내일 점심 순대국밥
-
매우매우 귀찮.. 그래도 가야겠죠?
-
늙은이들은 비켜잇
-
뀨뀨 16
뀨우
-
하루종일 침대에 누워서 신생아처럼 오르비만 한 보람이 있네요
-
고등학교 동창이 있어 행복하구나 열심히 사는 친구여서 주기적으로 동기부여 받을 수 있어 고맙네
-
수학 거의 노베인데 어떻게 공부해야 할까요? 어떤 문제집을 사야하는지, 어떤 인강을...
-
캬
-
9일더기다리라고 0
미친거아님뇨? 빨리빨리해주셈뇨 어차피이의제기안받아줄꺼면서
-
28학년도 수능은 문이과 완전 통합이잖아요. 그리고 고교학점제 시행한 애들이 보는...
-
뭔 길이 다 빙판이야
-
무지성으로 상대한테 죽어주고 타워 민 뒤에 자기는 운영하는건데 우리팀 뭐하냐고...
-
설카포연고 의치한약수 그리고… ‘건’
-
https://orbi.kr/00070161683/2026-%EC%8B%9C%ED%9...
-
여기가 ㅈ반고가 맞는진 모르겠는데 집 앞에 평반고 가는 것보단 더 낮은 데 가는 게...
원점에서 무슨일이 일어나고 있는거 같은데 해결이 잘안되네요
문제 출처랑 답좀 알려주실수있나요?
답 35 출처는 포카칩 수능직전 모의고사 입니다
아마 원그리면 ㄷ진다사건,.저격문제 같습니다.
수직되는 부분에서 뭔일 있을거 같은데
2014학년도 수능직전 포카칩 모의고사 답은 35입니다.
g(t)= 절대값 √t²+f(t)²-r 이고 원을 t가 음수인부분부터 그려보시면 절대값안의 값이 양수->0->음수->-r
->음수->0->양수 로 바뀜
일단 f(t)=√t²+f(t)-r 이라고 하고 이 그래프를 그린뒤 음수인부분은 뒤집어 엎으면 됨 ... 그리고 f(t)를 미분해서 f'(t)를 구하면 골때리는게 t가 양수인부분과 음수인부분으로 또 나눠짐
t가 양수인부분을 먼저 살펴보기로하면 음양부호결정하는 분자식이 2t²-3at+a²+1이고 이 식이 두근을
가지냐 한근을 가지냐 근이없냐 를 또 구분해야함 ...우리는 언제나 그랬듯이 한근을 가지는 경우 먼저 살펴봄 ...이때에도 위의 분자식에서 근과계수의 관계를 따져보면 한근이 양수임을 알수있음
t가 양수인 부분에서 f(t)를 대략적으로 그려보면 계속 증가하는 그래프임.... 맨 처음처럼 절대값안의 부호를 고려해보면 t가 0~s(f(t)의 근)에서는 음수이므로 위로뒤집고 s~ 에서는 양수이므로 그대로....
t가 음수인부분에서의 f'(t)는 t가 양수인부분에 음수만붙인거... 따라서 t가 음수인부분에서의 f(t)는
감소하는 그래프 .... 맨처음처럼 절대값안의 부호를 고려해보면 t가 ~ p(f(t)의 근)에서는 양수이므로
그대로 p~0에서는 음수이므로 위로 뒤집고
종합해보면 미분불가능 용의점이 3개가 나옴 t= p,0,s 근데 2개이므로 선량한 점이 한개 있음
바로 t=s 이부분에서 f'(t)=0 다른 두지점은 기울기가 0일수 없음....
f'(t)=0이므로 위에서의 음양부호를 알려준 분자식 t²-3at+a²+1의 판별식이 0 따라서 a의 값은 루트8
그리고 s= 2분의3 곱하기 루트2
f(t)=0이므로 s와 a를 대입하면 r=루트4분의27
왜 s부분에서는 0일수있죠? 제가거기서 막혀서 아무리해도 불가능점 세개나와서ㅠ
t가양수인부분에서 f'(t)는 0보다같거나 항상 양수
t가 음수인부분에서는 항상 음수
용의지점 3개중 기울기가 0이려면 양수인부분밖에 없음....
어 저기 절대 근이 3개가 나오지 않는데 얘 근 2개 밖에 안 나와요 컴퓨터로 그래프를 그리고 별짓을 다해도 근이 2개 밖에 안 나옵니다
근은 2개인데 저위에 써놓은 3점은 극점들임...
극점에서의 기울기가 0이냐 아니냐를 따지면되는거...
아 와 개어렵네요 해결했습니다 오르비 짱짱맨