초등학생도 이해하는 필요조건, 충분조건
안녕하세요. 독해와 논리를 가르치는 이해황입니다.
아래 내용은 PSAT/LEET 베스트셀러 『논리개념 매뉴얼5.0』을 바탕으로 제작되었습니다.
초등학생도 이해할 수 있게 썼지만, 수능뿐만 아니라 PSAT/LEET 수험생도 도움이 될 만한 자료입니다. :)
--
I. 들어가기
초등학교 과학시간에 전기회로를 배우며 직렬연결, 병렬연결을 배웁니다. 이를 통해 논리적 사고의 핵심인 필요조건, 충분조건, 필요충분조건을 직관적으로 이해할 수 있습니다. 결론부터 말하자면, 필요조건은 직렬연결에, 충분조건은 병렬연결에, 필요충분조건은 단일연결에 대응됩니다.
이를 간결히 설명하기 위해,다음과 같이 표현법을 약속하겠습니다.
L : L에 불이 들어온다.
~L : L이 거짓이다. 즉, L에 불이 들어오지 않는다.
A : A함에 전지가 들어있다.
~A : A가 거짓이다. 즉, A함에 전지가 들어있지 않다.
II. 전기회로와 논리적 개념
1. 직렬연결
직렬연결 전기회로에서는 다음이 성립합니다.
~A이면 반드시 ~L이다.
논리학에서는 ~A이면 반드시 ~L일 때, A를 L이기 위한 필요조건이라고 합니다. 이를 일상어에서는 다음과 같이 표현합니다. (아래 표현들을 익혀두면, 글을 읽거나 쓸 때 요긴하게 활용할 수 있습니다.)
A는 L이기 위한 필요조건이다.
≡ ~A이면서 L인 경우는 없다/불가능하다.
≡ (오직) A이어야(만)/일 때만/인 경우에만/인 (전제/가정/조건) 하에서만 L이다/일 수 있다/가 보장된다.
≡ L이려면 A이어야(만) 한다.
≡ L이기 위해서/위하여 A이어야(만) 한다.
≡ A는 L이기 위해 필요하다/필요한 조건이다/필수적 조건이다.
≡ A이지 않으면/않는 한/않는 이상 L?일 수 없다.
≡ L은 A를 함축/전제한다.
≡ A는 L의 요건/전제조건/선결조건/요구조건/핵심조건이다.
≡ A가 성립되지 않으면 L일 수 없다/이 성립될 수 없다.
≡ A는 L이기 위해 필요하다/요구된다/없으면 안 된다/반드시 있어야 한다/필수적이다/필수불가결하다.
마찬가지로 ~B이면 ~L이다, ~C이면 ~L이다가 성립하므로, B는 L이기 위한 필요조건이다, C는 L이기 위한 필요조건이다도 성립합니다.
2. 병렬연결
병렬연결 전기회로에서는 다음이 성립합니다.
A이면 반드시 L이다.
논리학에서는 A이면 반드시 L일 때, A를 L이기 위한 충분조건이라고 합니다.
이를 일상어에서는 다음과 같이 표현하기도 합니다.
A는 L이기 위한 충분조건이다.
≡ A이면서 ~L인 경우는 없다/불가능하다.
≡ A이면/일 때/인 한/인 경우에/인 이상/하에서/이기만 하면/인 것만으로도 L이다.
≡ A가 성립하면/보장되면 L이 보장된다/성립한다.
≡ A라는 전제/가정/조건 하에서 L이다.
≡ L는 A의 논리적 귀결이다.
마찬가지로 B이면 L이다, C이면 L이다가 성립하므로, B는 L이기 위한 충분조건이다, C는 L이기 위한 충분조건이다도 성립합니다.
3. 단일연결
전구가 하나의 전지와 단일연결되는 가장 단순한 경우를 생각해봅시다. 이때는 다음이 성립합니다.
A이면 반드시 L이다.
~A이면 반드시 ~L이다.
따라서 여기서 A는 L이기 위한 필요조건이면서 동시에 충분조건입니다. 이때 철학자들은 간결히 A를 L이기 위한 필요충분조건이라고 합니다.
A가 L의 필요충분조건이라는 것을 영어로는 A if and only if(줄여서 iff) L이라고 표현합니다. 근데 한국어에는 iff에 딱 들어맞는 표현이 없어서, 다음과 같이 다소 어색하게 표현됩니다.
A일 때, 그리고 오직 그때만 L이다
≡ A일 때 L이다. 그리고 오직 A일 때만 L이다.
≡ A는 L이기 위한 충분조건이다. 그리고 A는 L의 필요조건이다.
≡ A는 L이기 위한 필요충분조건이다.
맥락에 따라 A는 L의 기준이다도 필요충분조건을 타내는 표현으로 볼 수 있습니다.
4. 직렬연결을 병렬로 연결
직렬연결을 병렬로 연결한 아래와 같은 전기회로도 상상해볼 수 있습니다.
이때 A는 L이기 위한 필요조건은 아닙니다. 아래처럼 ~A여도 L일 수 있으니까요.
또한 A는 L이기 위한 충분조건도 아닙니다. 아래처럼 A여도 ~L일 수 있으니까요.
하지만 필요조건은 아닌 충분조건 덩어리 (A and B and D)를 기준으로 보면
A는 이 덩어리의 충분조건은 아니지만 필수적(필요한) 부분으로 볼 수 있습니다.
이 개념을 John Mackie라는 철학자가 1960년대에 INUS조건이라고 이름 붙입니다. 이는 an Insufficient, but Necessary(Non-redundant) part of an Unnecessary but Sufficient condition의 약어인데, 필요조건은 아닌 충분조건 덩어리의 불충분하지만 필수적인 부분 정도로 번역할 수 있습니다.
뭔가 복잡해 보이지만, 직렬연결을 병렬로 연결한 이미지를 떠올리면 어렵지 않을 겁니다.
5. 병렬연결을 직렬로 연결
앞서 INUS조건이 직렬연결을 병렬로 연결한 개념이었으니, 반대로 병렬연결을 직렬로 연결하는 것도 상상할 수 있지 않을까요? 아래처럼요.
이러한 구조는 공학에서 결함 허용 시스템(Fault Tolerance System)으로 불립니다. B를 병렬로 이중화, 삼중화하여 다른 요소들과 직렬로 연결하면, B에 결함이 생기더라도 A, C에 문제가 없는 한 시스템이 정상운영될 수 있기 때문입니다. 생명유지장치를 운영하는 병원에서 비상발전기를 운용한다든가, 데이터센터에 화재가 날 경우를 대비하여 서버를 이중화, 삼중화하여 분산시켜놓는 일 등이 위와 같은 시스템으로 설명될 수 있습니다.
III. 전기회로와 논리적 추론
... 인강 찍어야 해서 나머지는 2편에서 자세히 다루겠습니다.
좋아요가 많이 눌릴수록 2편이 빨리 업데이트됩니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
페이커랑 오너 구마가 6살 차이라는걸 깨닫고 깜놀했네
-
ㅋㅋㅋ 4페이지가니까 8분남네zzz 39점
-
ㅇㅇ... 자기 만족이 중요
-
나라고 수능 4일만에 만점 못 받을거 있겠냐? 다시달린다
-
난 과잠이 없음 3
집으로 배송 안해준다길래 못샀어 송도까지 가긴 귀찮더라구 친구한테 부탁할까 했는데...
-
... 제발 탈출하게해주세요
-
‘내가 수험생이라면?‘이라는 생각을 가지고, 마지막까지 볼 것 같은 고전시가를...
-
11덮 친날은 이퀄모 봣엇고 단과 선생님께서 수능 현장시뮬레이션 열어주셔서 오늘...
-
6모 국어 84점->97점(16번틀) 다시푼건데 100점 아닌건 안비밀
-
마지막으로 기출 다시 보면서 정리하는중인데 안해도 되겠죠?
-
오르비 난리나겠지
-
제발
-
일단 난 안나올거같긴함
-
맛집보다 가기 쉽고 미용실보다 저렴한데 갈때마다 날 살려줌 ㅋㅋ 물론 부모님이...
-
졸부 어쩌구하는 얘 11
왜 튀었냐?
-
가채점표 질문 1
혹시 시험 종 치고 나서 시험지만 보고 가채점표 쓰게 허락해주시는 감독관님도 있나요?
-
어카지...하
-
N_>4 이거는 3
하는거 아니다 사람이 미친다 제정신으론 못한다
-
국어 출제 찌라시? 14
개인적으로는, 사회 파트 출제의 경우 경제보단 법이 확률이 높지 않나 생각합니다....
-
방금 들어왔어요
-
김동욱 종강편지 7
ㅠㅠㅠ 참선생님
-
안 낸다는데 맞음? 단가육장이랑 우활가 전형태가 그러던데
-
작수 빼고여… 아니 예전 6,9는 ㄹㅇ 왤케쉽지 왜 갑자기 어려워진거야
-
일단 가자!!!
-
히카 30회 0
2회분 남았는데 다 풀고 갈까요 아니면 걍 기출할까요 1회 92 2회80 떴는데...
-
아오 공부 개힘들어 ㅠ 내일까지 사문 코어개념 완강해야함
-
못해도 항상 2등급 초반은 뜨는데요(80~85사이) 수능때 2 가능할까요?? 최저땜에 불안하네요ㅠㅠ
-
집에 쌓여있는데 수능전에 1개만 풀어볼려구요
-
전 최근에 어쩌다가 알게 되긴 함
-
수능 망하면 5
뭐하지
-
작년에 대성 사전예약이 앞으로 1년 있을 패스 중에 가장 혜자 였는데 올해도 아마...
-
오늘 올해 9모 풀어보니 확통으로 22.29틀 92점 나옴 1. 백분위 몇 정도...
-
옥린몽 옥루몽 유씨삼대록 줄거리 한 번은 다시 봐야되는데 ㅅㅂ 어지럽노....
-
본인 안나온다고 본 작품 싹 다 출제되는 마이너스감각인데 12
어느날 고궁을 나오면서 김종길 성탄제 조지훈 화체개현 이건진짜안나올거같지않나
-
확통 8문제 30분써서 30번 하나 틀린가면 운영 망한건 아니죠..???
-
군대란 슬픈말은 ㄴ
-
미친거아님….? 공리주의자면서 그런말해도됨….?? 하… 덕은 수단적가치아니었냐고...
-
무소속 탈출 기원
-
수학 커리 0
내년 고3 됩니당.. 지금 수1 수2 뉴런 병행중인데 미적 시발점은 언제 들어가는게 좋을까요?
-
나는 실모 순서대로 푼다는 가정 하에 20번 구간 들어가면...
-
제곧내입니다
-
지수진수으에에에에에 해서 점근선 정점 찾는 거 하기 싫음..
-
일단은 야광?시계랑 텀블러, 평소에 먹던 약 챙겨가리고 들었는데 그 이외에 다른거...
-
자꾸 개념문제에서 틀림 이게 그냥 개념을 모르는거면 고칠텐데 계속 잘못읽어서...
-
그래도 갓-의사 선샹님 덕에 먹을 음식 종류들이 다양해지고 있어요 근데 씹기...
-
음 수능내음 2
-
한동안 유기하다가 오늘 풀고있는데 천천히 보면서 고능아 풀이 하기도 좋고 미적은 꽤...
-
항상 화작을 먼저보니까 글도 잘 안읽히고 막히면 시간 소모되면서 답답한게 이후 공통...
오 좋은 글이네요
논리학을 전기회로로 비유하다니... 신박합니다
전기회로가 논리연산자에 완벽하게 대응된다는 것은 클로드 섀넌(Claude E. Shannon)이 21살 때 전기공학 석사학위 논문으로 발표한 내용이긴 합니다. 은 인류 역사상 가장 위대한 석사학위 논문, 20세기 가장 중요하고 가장 유명한 석사학위 논문 등으로 일컬어지고요.
저는 그 아이디어를 차용하여 수준을 더 낮추고, INUS조건 개념을 전기회로로 표현해본 것에 불과합니다. :)
‘섀년의 도깨비’의 그 쌔넌 맞나요?
네 ㅎㅎ
와..ㅠㅠ 정말 대단하시네요.
좋은 글 써주셔서 감사합니다!!
https://youtu.be/AiNqEz4yXh4
추론규칙을 추가하여 영상으로도 올렸으니 시청해보세요. 감동적일 겁니다 ㅎㅎ