1000덕) 수2 자작 ㄱㄴㄷ 문제
<나중에 다시 해 보겠습니다. 죄송합니다.>
그냥 일반적인 내용입니다. 문제 특징 때문 14번에 넣기에는 애매하긴 하네요.
반례 같은 거 꼼꼼하게 따져 보세요!
최초로 맞게 풀고 설명까지 제대로 하시는 분께 1000XDK 드리겠습니다! (이미 아시는 분들 제외)
(주관적) 난이도 : 3.5/10 (였는데 헷갈리는 건 저도 인정합니다...)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
슬프구나
-
컨설팅에선 뭔가 이상하긴 한데 여전히 소신 권이라 해서 접었는데 점공은 30퍼...
-
보통 어디를 말함?
-
잘몰라서 알려주세요 ㅠㅠ
-
문제는 올해부터 확사고정to가 2자리가 줄어드는.... 이거 생각보다 영향 클건데
-
저도 재수하면서 질문 받는 고인물 코스프레 해보고 싶음
-
다군은 좀 나중에 보고...
-
2, 3단원 그냥 증발함 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ 그와중에 6단원도 증발하는중임 ㅆㅂ
-
대학수학 칼럼을 쓴다면 11
뭘 쓸까요 알고 싶은 내용 ㅊㅊ좀
-
메가스터디 0
단과 강좌 없어졌나요? 7일 수강권만 뜨는데..
-
얼른 1지망으로 가버려라 흡
-
머리 좋다가 대부분 의대로 귀결되네...
-
좆드릴 2
뚫기
-
생윤 질문!!! 0
생윤 입문자 림잇강의 수강중인데 칸트 정언명령에서 인격주의내용에서 예시로 부부사이의...
-
안경의 장점 9
0. 갓경임 1. 폰이 얼굴로 떨어질때 눈을 보호해줌 제가 방금 경험했어요
-
롤창 컨셉하나는 잡았잖아 한잔해~
-
채연이vs정빈이 누구 승임?
-
26수능 목표 3
26수능 안보기
-
자기 잇속 챙기는 일에는 대통령 거부권 “해줘“ 전공의 처단 포고령에는 “몰?루?“ GOAT
-
현명하다 부럽다 말고 말 그대로 머리좋다 기준 전 갠적으로 영재교졸/과고조졸 후...
-
중대 심리 진학사 등수 낮았는데 앞 사람이 더 높은 학교 문과나 중대 경영 같은...
-
얘기해야지 살수있음?? 글고 지금 사는거 추천????????
-
직업이 고등학교 선생님임 학교에서 학생들한테 상당히 인기 많더라
-
올오카 안하고 테이리부터 하려하는데 그동안 할만한가요?
-
분명히 했던 것 같은데
-
19살 자퇴생인데 현역된 기념 열심히 하려고 기숙에 들어왔는데 (20일 정도 지남)...
-
혹시 진짜로 2
영어 공부를 재밋어하시는 분이 잇나요 잇다면 정말 취향은 다양하군요
-
수능 전에 마저 못푼 n제 한문제씩 푸는중 수2 개형추론 ㄹㅇ 재밌음 너무 어려운거...
-
연대 발표 하루쯤 전이겠다 싶으면 열어볼래요 너무힘들다
-
고사양 게임 즐겨하는편이라 게이밍 노트북으로 사려하는데 대학교 과제나 활동할때...
-
26 수능 목표 11
화통정생으로 고의 쟁취하기 만점이면 될 수도 있잖아
-
행복하길 바래 16
너가
-
합격증이랑 수능 성적표만 가지고는 ㅂㄱㄴ할라나
-
백귀야행 1,2장이랑 대책위원회 3장 언제 다 밀지....
-
인증 없으면 구라라니깐뇨
-
사실만 간단하게 3
뉴스로 올리고싶은데 링크 되는 뉴스가 안올라오네용 경호처 폐지 법안 발의 유튜브 검열 법안 발의
-
볼캡 사려고 하는데 몇개가 적당할까 한개는 있구 2개 살지 3개 살지가 고민임요
-
재수하면서 걸어둔 학교로 돈벌기 ㅎㅎ
-
수성 트럼프 월드 살면ㅅㅌㅊ인거임뇨?
-
행복하길 바래 9
에서 바래는 틀린 표현이며 바라가 와야 표현이 맞습니다 네 밥 묵으러 갑니다 ㅎ.ㅎ
-
T1) 2025 LCK CUP에도 T1 ZONE에서 함께 응원해요! 1
출처) T1 Instagram @t1lol
-
왜클릭 1
왜클릭
-
수능은 미적인데 확통은 내신땜시 챙겨야함니다 수(하)에서 특히 경우의수나 순열조합은...
-
왜클릭
-
성적 몇 점대까지 뚫릴 거라고 보시나요? 생명과학부, 생명공학부, 화공생명공 진학사...
-
26수능 목표 10
서강대 or 경희대 합격 Team 02 Team 화기정사 lets go
-
1,2,3,4,6단원 문법 5단원 매체 인건가요.
-
왕 0
시작
-
수능 만점 받기
아마 실전에서는 이렇게 해서 ㄱㄴㄷ 하지 않았을까...
으음... ㄴ이 문제인 걸까요... g(alpha)가 0이 아니라면 g(alpha)는 양수이거나 음수인데...
f(x)가 극값이려면 애초에 g(x)의 부호 변화가 생겨야 하는데... g(alpha)가 0이 아니라면 x = alpha에서 부호변화가 생길 수 없으니 극값도 없다고 판단한 거였는데... 뭐가 문제인 걸까요.
그리고 ㄷ에 제시하신 저 함수는 만족 안 하는 걸로 보이네요
그러면 답이 ㄱ ㄷ인 건가요? ㄴ을 어떻게 판단해야 하는 건지 잘 이해가 안 되네요...
근데 ㄴ에 저 집합기호는 교집합 기호 아닌가요...?
그러면 주어진 범위는 공집합이 되는데요...
아 뭐야 잘못 입력했어요 ㅠㅠ
ㄱ,ㄷ인가요?
아 ㄷ이네요ㅜㅜ
연속이 미분가능성을 보장하지는 않으니까요..?
g(x)가 존재한다는 건 미분가능하다는 의미긴 해요
다만 미분계수 정의가 극한으로 정의돼 있기 때문에 g(x)의 '극한값'만 존재하고 함숫값이 이와 달라도 g(x)가 미분가능한 함수의 도함수가 될 수 있어요
도함수는 한 점에서만 불연속일수는 없지 않나요?
그리고 g(x)가 어떤 함수인지 알기 전까지는 g(x)의 존재가 g(x)의 실수 전체집합에서의 존재를 보장하지는 않지 않을까요? 예를 들면 알고보니
g(x)가 무리함수인 경우가 있을 수 있을 것 같아요
도함수는 몇 개의 점이든 불연속일 수 있으며, 극한값만 존재하면 원래 함수는 미분가능합니다. 이것은 논술과 임용고시에서 출제되는 소재라고 합니다.
f(x)가 실수 전체 집합에서 정의된 함수인데 모든 실수 x에 대해서 저 식을 만족시키는 g(x)의 정의역이 모든 실수가 아니면 모순이지 않나요?
제가 든 무리함수 예시는 오류가 맞네요..
다만 제가 말씀드리고자 하는 것은 도함수는 극한값이 존재하는 어떤 점에서 함수값만 그 점에서 다를 수는 없다는 거예요
아 그렇네요 도함수가 그 점에서 값이 존재하지 않는 경우 갖고 생각하다가 잘못 생각했나 봐요