칼럼5) 생각보다 많이 하는 실수
아래 카톡은 제가 부방장으로 운영하고 있는 오픈채팅 질문방입니다.
진짜 생각보다 많이 하는 실수 ㅎㅅㅎ
여러분도 한 번 두 함수가 어떻게 그려질지 상상해보셔요. 직접 그리셔도 좋습니다.
(x가 한 1000쯤까지는 표현되게끔 큰 스케일로요!)
(더 내리면 답)
아마 셋 중 하나를 생각하셨을 겁니다.
유형 A: 아래 그림처럼 가까워 지지 않고 위 아래로 간격을 유지하는 느낌
유형 B: 아래 그림처럼 서로 가까워지는데 만나지는 않는 느낌
유형 C: 아래 그림처럼 가까워지다가 교차함
위 카톡에서 3컷 판독기 님은 유형 A를 그려주셨습니다. 답은 B입니다.
아니 평행이동한건데 B처럼 가까워져도 되는건지, 오히려 A처럼 간격을 유지해야 하는게 아닌지 의문이 드실수도 있습니다.
혹시나 A같은 느낌을 상상하셨다면, "x축 평행이동"에 대해 다시 생각해볼 필요가 있습니다.
다음과 같이 x축 방향으로만 100씩 차이나면 되는 것이지, 위아래 간격을 유지해야할 필요는 없는 것이죠. 로그함수 특성상 x축 간격을 유지하다보면 위아래로는 점점 가까워질 겁니다. 이유를 잠깐 짚고 넘어가자면,
지수함수에서 x값이 늘어남에 따라 미분계수가 급격하게 커지므로 로그함수의 경우에는 미분계수가 급격하게 0에 가까워집니다. (하지만 절대 0이 되진 않죠)
두 함수 위에 각각 점 A(a,log_3 a), B(a,log_3 (a-100) ) 두 점을 찍었다고 해봅시다. B가 더 아래에 있는 셈이죠. x=a인 곳에서 두 함수가 어떤 상태에 있는지를 관찰해보면, log_3 x 그래프가 점근선에서부터 더 많은 거리를 달려왔습니다. 미분계수가 더 0에 가까운 거고, 즉 더 flat 한거죠. 그래서 y좌표 차이가 줄어들게 됩니다.
그럼 왜 만나지는 않는지가 궁금하실수도 있습니다.
두 함수가 교점을 가진다는 것은 같은 x값에 대해 같은 y값을 가짐을 의미합니다. 로그함수는 증가함수이기 때문에 어떤 y값을 가지는 x가 하나만 존재하는데요,
log_3 x 함수 위의 어떤 점과 같은 y값을 가지는 log_3 (x-100) 위의 점은 하나만 존재하는데, 그 놈이 x축 양의 방향으로 100만큼 가버린 셈이죠. 그러니 절대 교점이 생길 수 없습니다.
수식적으로 써보셔도 괜찮습니다.
당연히 없겠죠!
(+내용추가)
Ha_Rua 님께서 그래프 그린 걸 댓글에 올려주셨네요. 보시다시피 A유형과는 차이가 큽니다.
혹시나 이런 함수를 그릴 상황이 왔을 때, 조금도 헷갈리지 말고 그림을 잘 그려내시라고 글을 써봤습니다.
어떻게 보면 이게 문제를 맞고 틀리고를 결정하는 부분은 아니긴합니다.
근데 제가 처음 지수로그 배우고 나서 이런걸 그릴 상황이 왔을 때 어떻게 그려야 하는가에 대해 고민을 했었던 경험이 있어서, 좀 정확히 그리는걸 원하시는 분들을 위해 써봤어요ㅎㅎ
참고로 글에 사용한 카톡 유저 분들께는 전부 허락을 받았습니다.
준비한 내용은 여기까지입니다. 오늘 글은 좀 가벼웠죠! 다음에 더 좋은 글로 찾아뵙겠습니다.
팔로우해두시면 재밌는 자작문제와 칼럼을 놓치지 않고 확인하실 수 있어요ㅎㅎ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
중학교 2학년이 예전에 수학상 한번 봐서 가물가물한 상태로 수학 상 한바퀴 돌리는데...
-
미적 물리 노베가 수시로 공대 입학하게 되는데 조언좀요 3
20살때 취업 빨리하겠다는 생각으로 전문대 갔다가 군대 가서 생각이 바뀌게 되어...
-
통역까지 있어야 하는 공사현장… 철근이 지시대로 박히지 않았다[히어로콘텐츠/누락③-상] 4
지난해 11월 서울 도심 아파트 신축 공사 현장. 바닥, 벽, 천장 등 사방에...
-
혹시나 이 귀한 외박 날에 오르비를 보고 있는 864동기들이 있다면 유감을 표하는...
-
3문제 정도 못풀었으면 10분동안 검토 vs 하나라도 더 풀기
-
망햇어..
-
너무 좋음...힐링되고 다들 보세요
-
91년생 평범한 직장인으로 근무하고 있는 사람입니다 나이를 한살 한살 먹을수록...
-
진짜 외모가 다임을 뼈저리게 느끼고 있는 요즘임
-
이런 옯창들 8
아침부터 레어 사자마자 가져가네
-
올해 인하대 3
입결 약간 올라갈거같음?? 진학사 써보신분들
-
설전전,기계,통계, 자전 현재 점공 커트라인 몇점 인가요? 꼭 모두 합격하시길 기원합니다.
-
뛰어내려야겠다 취업 게시판 보니까 답이 없네 걍
-
재고수대 0
-
아 공군 가고 싶다
-
굿 모닝 0
굿 모닝은 개뿔 10시네
-
(나) 조건에서 1. MC와 AB가 직교한다는건 알겠는데 2. 평면 beta로부터...
-
케리아 행복롤 시켜줘라 티원에서 못나가게 절대 붙잡아야 한다
-
가슴뼈가 아프다 0
왜지 운동 잘못했나
-
갑자기 궁금하네
-
어제 보냈는데 주말에는 일 안하나?
-
틀린 문제 오려서 모아둿다가 수능 1~2달전에 틀린문제 위주로 복기하니까 좋앗음...
-
1. 은근슬쩍 가스라이팅 함. -> 나는 자기 아니면 받아줄 사람 없다, 나 떠나서...
-
오래된 소원이다...
-
프변완 3
-
비상!!!!
-
34명 뽑는 과에서 예비 6번이면 현실적으로 붙을까요? 작년에 33명 돌긴 했는데 불안해서요..
-
뱅, 룰러 그리고 바이퍼..
-
춘천교대 예비 18번 빠질까요? 작년엔 80번대까지 빠지긴 했더라구요..
-
남의교재 보는거 비상식적임뇨?
-
혹 시간괜찮으신분 계시면 쪽지나 댓글 부탁드립니다 전과나 복전 관련해서 궁금한점이...
-
경희대 에타 들어갔는데 뭔가..좀..ㄷㅆ같은 느낌이 듦.,
-
아침부터 0
드럼 치는 중 스토리에 올려야징 헤헤헿
-
고려대 경영 일반 대기 51번이면 가능성 있나요?? 3
좀 애매한거 같아요ㅜㅜ 마음졸이네요
-
진짜 스~미친년인가 16
밤길조심해라친구야 이빨다부숴지기전에
-
심찬우강의듣고 틀린거 고치는데 해설책이 따로없나요?
-
나군 서울대 합불여부랑 추합자수 봐드릴테니 쪽지주세요
-
연고대vs 중경외시 서로 간의 취업난이도가 많이 차이 날까요 ? 이번에 24살...
-
그리고 추합 좀 돌았으면..
-
조선시대 전기때 알았을까?
-
팔로워 한 명 줄어있음
-
10의500 승 개 있으면 놀랍기도 할텐데 왠지 진짜 저 정도 이상으로 있을 것...
-
ㅈㄱㄴ
-
나는 그냥 화 낼 기력이 없어서 포기하게 되는듯
-
예고 입시를 함께 했던 연습실...의 옆옆칸 피아노 전공이었지만 연습하다가 스트레스...
-
시대인재는 3월부터 정규반이라고 공통이랑 미적 같이 해주는 반 있잖아요. 근데...
-
수능날까지 공부 아예 안해도 딱 한과목은 백분위 99 나오게 해준다면 무슨 과목에 할건가요?
-
심심하잖아,,, 고대 물리 16명 뽑았는데 그 16명 전부다 고대 낙지 점공...
wow
헉
헉!
헉 왜 지우셨어요 ㅠ
일단 수상하가 무조건 1순위고, 이게 충분할 때 수1 들어가시면 좋을 거 같아요. 아무튼 수1을 좀 건드려보기로 결정하셨다면 자이스토리 추천드려요 :)
헉 감사합니다
칼럼에 이런 댓을 다는 게 좀 그런거같아서 ㅋㅋ
항상 감사합니다
사실 C만 아니면 별로 상관은 없
제가 처음 지수로그 배우고 나서 이런걸 그릴 상황이 왔을 때 어떻게 그려야 하는가에 대해 고민을 했었던 경험이 있어서, 좀 정확히 그리는걸 원하시는 분들을 위해 써봤어요ㅎㅎ
2번처럼 그렸어요!
근데 사실 문제 풀 때 로그 스케일 엄청 뒤쪽은 필요한 경우가 거의 없어서 A처럼 그렸던적도 있는것 같아요
와 뭐지 낚였다
로그함수는 결국 y축쪽에서 수렴을 하니까 평행이동을 해도 나중에는 서로간의 y축쪽 간격이 줄어든다는 뜻인가요? 잘보고갑니다!
아닐걸요??
지수함수에서 x값이 늘어남에 따라 미분계수가 급격하게 커지므로, 로그함수의 경우에는 미분계수가 급격하게 0에 가까워집니다. (하지만 절대 0이 되진 않죠)
두 함수 위에 각각 점 A(a,log_3 a), B(a,log_3 (a-100) ) 두 점을 찍었다고 해봅시다. B가 더 아래에 있는 셈이죠. x=a인 곳에서 두 함수가 어떤 상태에 있는지를 관찰해보면, log_3 x 그래프가 점근선에서부터 더 많은 거리를 달려왔습니다. 미분계수가 더 0에 가까운 거고, 즉 더 flat 한거죠. 그래서 y좌표 차이가 줄어들게 됩니다.
헉
헉!
당연히B지하면서들어온
예전에 혼자 생각해봤던 거였는데 아는 내용이 나오니까 좋네요!!
앞으로도 좋은 글 많이 써보겠습니다!
저렇게 카톡으로 물어봤으면 나도 A했을거같은데 본문에서 수학 많이 하는 실수 이러니 유심히 생각해서 B고름 ㅋㅋㅋ
싱기방기
본문에 추가했어요! 그림 감사합니다 ㅎㅎ
항상 좋은 칼럼 감사합니다!