영의 정리 a.k.a. 역함수 적분 (ft. 2211미적30, 22예시미적29)
역함수를 이용한 치환적분법이나 역함수 관련 적분 문항이 나오면 주로 그림을 그려 설명하시더라고요.
역함수가 정의되려면 원래 함수가 일대일대응이어야하고 그럼 연속함수라면 증가함수 아님 감소함수니까 대충 곡선을 그리는 방식으로요!
그런데 저는 그렇게 그림을 그리는 것이 엄밀하지 않다고 느꼈고 역함수 문항이 출제되면 주로 아래 식을 떠올립니다.
함수 g(x)가 f(x)의 역함수일 때 다음이 성립한다. (a.k.a. 영의 정리)
증명은 별 거 없습니다. 역함수가 보이니 역함수를 이용한 치환적분을 걸어주면 되겠죠.
이렇게 바라봐주면 치환적분법에 의해
가 되고 여기서 부분적분법 걸어주면
가 되어
가 되니 증명 가능하죠.
자 이제 이를 활용해 문제를 몇 개 풀어봅시다!
구해야하는 값을 보면 부분적분을 통해 아래의 값으로 이해할 수 있습니다.
(가) 조건의 f(1)=1과 (나) 조건을 통해 g(2)=2f(1)=2이니 역함수의 정의에 따라 f(2)=2
g(4)=2f(2)=4이니 역함수의 정의에 따라 f(4)=4
g(8)=2f(4)=8이니 역함수의 정의에 따라 f(8)=8임을 알 수 있습니다.
그럼 8f(8)-1f(1)의 값은 8*8-1*1=63이 될 것입니다.
또한 (나) 조건을 통해 닫힌 구간 [1, 2]에서의 f(x) 정보를 통해 구간 [2, 4]에서의 g(x) 정보를 얻을 수 있고
마찬가지 방식으로 구간 [2, 4]에서의 f(x) 정보를 통해 구간 [4, 8]에서의 g(x) 정보를 얻을 수 있을 것임을 파악 가능합니다.
그럼 주어진 항등식의 양변에 적분을 씌워주면
에서 아래와 같은 치환적분을 통해
다음의 정보를 얻을 수 있습니다.
이제 영의 정리를 통해
로부터
임을 알 수 있습니다. 그럼 다음의 정보를 얻을 수 있습니다.
같은 방식으로 순차적으로 다음의 정보들을 얻을 수 있습니다.
그럼
를 통해 적분값도 알 수 있으니 (계산해보시면 28.25 나옵니다)
최종적으로 구하고자 하는 값은 63-28.25=34.75, 답은 139/4로 143이 될 것입니다.
하나 더 해봅시다!
이건 우선 정적분으로 정의된 함수이니 대입하고 미분해주면 다음을 얻을 수 있습니다.
f(x)식이 주어졌으니 alpha값에 대해 생각해보면 f(x)가 증가함수라 F'(x)의 부호는 양수에서 방정식 f(x)=t의 근일 때를 지나면 음수가 될 것입니다.
다시 말해 함수 F(x)는 방정식 f(x)=t의 근일 때 극대일 것이고 그래프 개형 생각해보면 최대일 것이니 alpha값은 방정식 f(x)=t 근과 같겠습니다.
이때 t가 변함에 따라 alpha값도 변할테니 문제에 명시된 대로 alpha는 t에 대한 함수, g(t)라 표현해볼 수 있을 것입니다.
그럼 다음의 상황이 되는 셈인데.. 이거 역함수 감성입니다.
이제 구하고자 하는 적분값에서 아래 치환을 해주면
아래처럼 되어 값을 구할 수 있습니다.
만약 적분에 들어간 식이 단순히 g(t)였다면 영의 정리를 바로 적용하여
로부터 적분값을 쉽게 구할 수도 있었겠죠! f(x)는 바로 적분할 수 있으니까요
p.s. 2022학년도 수능 미적분 30번 설명할 때 (나) 조건에 다음과 같은 정보를
수학(하)에서 학습했던 합성함수, 역함수를 떠올리면 더 쉽게 해석할 수 있다 하더라구요?
그런데 저는 잘 모르기 때문에.. 이에 대한 설명은 나중에 공부해와서 다시 남겨보도록 하겠습니다.
(아시는 분 댓글에 설명 부탁)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
막상 먹으려니 식욕이 없네.. 낼아침에 먹고 잇올갈까
-
그래도 평균보다는 좀 큼 5등급이여서 문제인거지
-
하나님 믿음 2
내신때 1등급 턱걸이 뜨면 아는 신 다 믿기로 했는데 딱 문닫고 1나옴.. 신은 존재한다
-
과탐에있다가 이제 처음 하는데 도표특강도 같이 듣는게 좋은가요? 생명은 1 쭉...
-
잘 안풀어주네 애들이..
-
바로 소방관 분들이죠 어마어마한 체력을 가지고 있으시고 21세기의 슈퍼맨들 이시죠...
-
신이 없다고? 웃기지 마라 이게 신이 아니면 뭔데
-
1. 우선 필기의 양과 수업의 질은 정확히 반비례한다고 보면 됨 -> 필기를...
-
사문 떡밥에 걸맞는 사문 컨텐츠 리뷰 (24학년도) 1
(개념) 1. 윤성훈 SPEED 개념 (15강 / 완강) • 2학년 때 내신이...
-
1년 365일 인체 온도 36.5도
-
시대 기숙 모집요강 나오고 정하고 싶은데 선착순 전형인지라.. 2월 중순까지 전액 환불 가능한가요?
-
ㅅㅂ 있었으면 내가 그렇게 빌었는데 사수를 시키면 안 되는 거 아니냐고
-
그냥 다 해줬잖아~
-
물1화1을 했으면됨 뭘로 바꿔도 최소 손해는 안봄 ㅋㅋ
-
이학사랑 다를거없는거아님 그럼?
-
눈 인증 2
ㅇ
-
난 사지말라고 했다.
-
팩트) 0
뭐든 좋다. 다만 과하면 뭐든 좋지않다.
-
초등학교때 수학여행이 사고로 무산됐고 중학교때 코로나 걸려서 혼자 못가고 고등학교때...
-
감사한데 왜..?
-
복권 ㅇㅈ 0
1등 하고 싶어요.
-
슈냥 구매완 8
-
어렸을때 신 우주 이런거 나오면 걍 침 질질 흘리고 재밌게 보긴함 ㅋㅋㅋ
-
얼굴의 면적이 작은건 아니고 여친이 있는것도 어니고 공부를 막 ㅈㄴ 잘하는것도...
-
님들 ot들음? 6
이젠 걍 거를까
-
미적분 시발점 3
현역이고 고2 모의고사 기준 낮2등급이고 미적분 1회 예전에 한번하고 현재 미적분...
-
네?
-
남들에 비해 학창시절의 추억이랄 게 하나도 없는 것 같음 대학 가서 만들기에는...
-
산다vs안산다 1
https://orbi.kr/00071588374
-
이신혁 파이널 필기노트에서 수능 다 나왔다는데 맞나요??
-
한 번 사볼까 6
-
연대질문받음 48
1학년따리라 복전은 모름.. 그래도 송도는 빠삭함
-
시대 재종 질문 2
94 98 1 99 100 인데 높반 가능한가요??(언미물지) 그리고 높반이면...
-
술 못먹고 술먹으면 울어 속상해 ㅠ 할줄아든게 없어
-
두각 일요일 오후 201호 반인데 나만 분위기 개 답답하냐.오늘 션티 쌤이 어케든...
-
여러분들 개인한테 하고 싶었던 말 한마디씩 해드릴게요 점 찍고 튀어봐요! 。◕‿◕。
-
여자라고 할때요
-
생명 n제 5
생명 n제 ㅊㅊ좀
-
목동은 전장인데 대치 30은 될런지 궁금
-
ㅆㅂ차은우 성대는 알았는데 나캠든?이사람은 성솦이네 2
3특인가 어케한거임? 아이돌하면서
-
정상적인 글 쓰다가 갑자기 예수왜 안믿냐 이러노
-
후회는없다..
-
전 솔직히 안 그리움 학창시절이 초중고 내내 워낙 암울한 편이었어서... 근데 이...
-
나는 비록 여친이 없지만! 나는 비록 친구도 없지만! 나는 비록 사회성이 없지만!...
-
탐구는 나발이고 0
지금 수학이 개둏댛다는 것을 깨달음 시바ㅏㅏㅏㅏㅏㅏㅏㅏㅏ
-
평가원하고
-
연대는 붙었고 서울대는 붙을거 같아요 서울대가면 무조건 복전할 예정입니다 (아마도...
-
특수할 때로 찍는 것 24
이건 걍 지녀서 나쁠게 없다 도 아니고 걍 지녀야만 하는 태도 라고 생각함 다만...
책님 올해 미적 29번 역함수 적분문제 풀어보셨나요? 이정도면 난이도가 어느정돈가요? 전 작년 기하충->올해 미적충입니다
( 그렇게 어렵진 않은거 같은데 정답률이 낮더라고요.. 28번 도형문제가 훨 더 어렵던데;;)
솔직히 왜 4점인지 싶었습니다. 어렵다거나 정답률이 낮은 이유를 설명하라면 '수능 현장이었고 29번에 위치해서'밖에 말할 게 없다고 생각해요. 개인적으로 geometry dash 감성으로 수능 수학 문항 난이도를 분류해보자면 easy, normal, hard, easy demon, hard demon 중 2311미적29는 normal이라고 생각합니다.
물론 이는 '역함수를 이용한 치환 적분' 혹은 '영의 정리'를 충분히 학습한 상태 기준이고 이 주제를 평가원 기출 문항을 통해 충분히 학습할 수 있기 때문에 normal이라 잡았습니다. 본문의 2211미적30만 봐도 출제된 지 1년 된 소재이니... 충분히 학습했어야 한다고 생각합니다.