나는 현우진 수분감 작수 14번 해설이 왜 논란이 안되는지 모르겠음
아무도 이걸 언급을 안하네?
14번 ㄴ 해설을 우극한으로 정의된 함수의 좌극한은 상쇄돼서 함숫값이라는 멍소리를 하는걸 보고 저거 해설 바뀌겠구만 했는데 아직도 그대로더라ㅋㅋㅋ
그게 +-가 상쇄되어서 그러는게 아니기 때문에 다른 문제에 적용되면 안될 수밖에 없음.
저 해설보고 아 상쇄되는구나 정리한 애들은 언젠간 나중에 한번 틀리고 어 왜 상쇄 안되지? 할거임.
극한으로 정의된 함수의 극한이라는 소재는 충분히 미리 다뤄놓을 가치가 있는데..원리도 간단하고 쉬운데 말이지. 솔직히 뉴런에 넣어놨어야 한다고 본다.
이번에 4모 미적 30번도 작수 14번 제대로 분석해놨으면 훨씬 빨리 풀 수 있었음.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
산책이즐거워요
-
시대 등급컷 1
시대 등급컷 어디서 볼 수 있나용??
-
주세요
-
12월 입대예정인데 고민도 많이되고 상담해주실 분들 구합니다..
-
뉴스타트 메가패스 언제까지 하는거예요? 12월 2일까지 한다고 하는데 10만원...
-
98점이면 안되겠죠? 2월에 그래도 봉사랑 이것저것다해서 이렇게 나오던데 안되면 육군가고
-
강남학사 0
비용이 어느정도인가요?
-
지금 6명이랑 5병째 아직 괜탆아 섻
-
아임 송하빵 0
-
야자도 안하는데 이시간에 학교를..
-
산책나왔어요 14
눈도보는김에 너무예뻐요
-
인공지능에게 정복된 지 오래인 게임을 인공지능을 이용해 오히려 더 발전시키고 요즘...
-
옛날엔 유튜브만 보고도 재밌게 있었는데 이제 뭔가 다 재미가 없음
-
뭐지다노
-
재수,삼수때 미적 하고 28,29,30틀 거의 항상했었고, 확통은 현역때 하고...
-
희망과는 경영, 경제, 정치외교, 행정 정도입니다. 내신은 2점대 초반인데 교과우수도 될까요?
-
그냥 공범 아닌가? 앞뒤 안맞는 진술서를 고쳐주면서까지 범죄를 성립하게 만드는게...
-
지구 1컷 0
42 아니었냐고 하.. 부산시교육청 믿습니다
-
탑의 랩 없으니 뭔가 허전 패배는 있으나마나 인 것 같고
-
빠빠뇨
-
다이어트가 아닌데 걍 돼지잖아 ㅅㅂ
-
중경외시 건동홍 국숭세단 << 여긴 빠삭함뇨 제작년에 국숭세단 공대 건동홍 교차...
-
수험번호도 만약에 똑같이 써 버리면 그냥 1차 합격자 그대로 다 뽑는 거 아님?...
-
이별이 두려워서 3
시작하지 않으면 진짜 좋아하는 게 아닌 건가요
-
독서 국어 강사 4
누가 가장 좋나요???? 언매 문학은 이번에 다맞고 독서는 30분정도 썼는데 많이틀려서요…
-
서성한 되는 과 있을까요? 내신 1점대면 고대 낮과 교과 상향 가능성 있을까요?
-
보통 1월 말까지는 계속 19만원인가요?? 작년엔 어땠어요?
-
졸린 사람 특징 2
졸림
-
님들이 공경돌렸는데 이스쿼드다 그럼 어떤생각드심?
-
나 문학 풀 때 0
처음 읽을 때는 거의 이해 못하고 문제 선지들 이런 거 보면서 작품 이해하고 푸는데 이게 맞나
-
흑흑
-
수정사항 FAKER - 29일 10PM -> 11PM - 30일 10PM -> X
-
그동안 국어 풀면 문학은 잘 나오고 독서에서 와장창 깨졌어서 독서 공부만 햇네요...
-
후한건가요 짠건가요
-
가슴골조금보이는옷입엇다고지랄햇던거생각하니까피꺼솟ㅈ하네요
-
굶으면 ㅈ~~~ㄴ 잘빠짐
-
김승리or정석민 현우진 이영수 최적으로가려고합니다 환급받는다는마인드로가려하는데 어떤가요
-
제발
-
피곤하구나 16
그래도 다음 주 한정 목금 공강이 되어버렸어요
-
선착1 5천덕 3
내놔!
-
그건 바로 p파임뇨 푸하핫
-
광클 이벤트 당첨돼서 쿠폰함에 쿠폰 있다고 하는데 쿠폰함에 쿠폰이 없어서요
-
과탐 정상화시켜라
-
고2 기말고사 끝나자마자 바로 화1 손절 친 거 이 샛기 이때부터 쎄했다니까??
-
화1 만표가 64? 더프냐 ㅅㅂ?
-
개정 씨발점>>한완기평 +교사경 일단 여기까지 생각해봤는데 어떻게 생각하세요 지금 4~5에요
-
원래 12시간하고도 부족하다고 생각했는데 요즘은 한 3판하면 질림….
-
1컷 50 화1은 7ㅐ추ㅋㅋㅋㅋㅋ 아 1컷이 51점이겠냐고 ㅋㅋㅋㅋㅋ
-
철갑옷 두르고 피 한 칸 남음
상쇄 안되나요? 그럼 어떻게 풀어야 하나요
결론부터 말하자면 'f(x)의 좌극한/우극한으로 정의된 함수'의 x=a에서의 좌극한/우극한은 그냥
f(x)의 극한으로 정의된 함수나 f(x)의 좌극한/우극한과 결국 같습니다.(극한으로 정의된 함수가 평행/대칭이동일 가능성이 있기 때문에 전자로 이해하는 것이 편해요.)
따라서 위 해설은 상쇄된다가 아닌, 결국 좌극한이다로 가야 맞지요.
핵심은 '좌극한/우극한으로 정의된 함수'(이하 좌우정함)는, x=a에서 함숫값이 정의되지 않는 '극한으로 정의된 함수'(이하 극정함)에서 함숫값을 정의해 준 함수일 뿐이라고 인지하는 것 입니다. 그렇기에 원래 함수의 함숫값은 좌/우극한을 구하는데 전혀 의미가 없지요.
쉽게 말하면 좌우정함은 극정함에서 소위 말하는 빵꾸를 메꿔준 함수일 뿐입니다.
그래프로 이해하면 가장 편합니다.
예를 들어 f(x)라는 함수의 x=a에서의 좌극한은 2, 우극한은 -3, 함숫값은 1이라고 합시다.
f(x)는 x=a에서의 극한값이 정의 되지 않기 때문에, 이 함수의 극정함은 a에서의 함숫값이 정의되지 않습니다.(평행/대칭이동X일때)
하지만 f(x)의 우정함은 정의해줄 수 있지요. 이 경우 우정함의 x=a의 함숫값은 -3이겠죠?
이 우정함의 x=a에서의 좌극한을 구한다고 합시다. 자 여기서 우리가 헷갈리는 부분이 나옵니다. f(x)의 우정함은 f(x+)로 아는데, 좌극한은 어떻게 구하지? f(a+-)?
그러나 아까 상술했듯 우정함은 그저 극정함에서 정의되지 않은 함숫값을 우극한으로 정의해놨을 뿐입니다. 우정함의 좌극한은 결국 극정함의 좌극한과 다르지 않다는 의미이죠.
따라서 f(x)의 우정함의 x=a에서 좌극한은 2겠네요. 현우진 선생님의 논리라면 1이고요.
글로 써서 과연 전달이 잘 됐을까 하네요ㅎ..
그렇군요 극한으로 정의되는 함수는 준킬러에서도 잘 나오는 소재이니 잘 써먹겠습니다
좌/우극한으로 정의된 함수에 대해 잘 서술해 놓은 책이 있나요? 무슨말을 하신진 어느정도 알겠는데 약간 찝찝하네요. 관련내용 찾아보려고 14번 강의도 보고 기출책 답지도 찾아봤는데 강의들은 대부분 치환해서 풀고 책은 왜그런지 서술하기 보다는 그냥 좌극한으로 간다고만 적혀있네요. 그냥 받아들여야 하나요...
음 혹시 이렇게 이해해도 되나요? 1의 좌극한의 우극한이라는게 1의 좌극한과 1사이의 무수히 많은 실수중 하나여서 결국은 1의 왼쪽이니 좌극한이 된다.
근데 이렇게 이해하면 다른 문제가 생기는게 1의 우극한의 좌극한이 되면 오히려 1의 우극한이 되는거 아닌가요? x에 대한 함수여서 좌극한을 보는게 먼저일까요?
그렇게 이해하기보다는 그래프로 이해하시는게 빠릅니다.
하신 것처럼 식으로 이해하려면 이렇게 이해하시면 될듯 합니다!
결국 마지막에 적용되는 극한방향만 고려하면 된다고 외워두시는 것도 좋아요.
감사합니다
선생님 혹시 시간 되시면 아래 글 확인해주실 수 있을까요?
https://orbi.kr/00063066874
선생님과 제가 생각한 방식이 다른 것 같은데 이에 대해 어떻게 생각하시는지 의견이 궁금합니다.
저도 "14번 ㄴ 해설을 우극한으로 정의된 함수의 좌극한은 상쇄돼서 함숫값이다"라는 설명이 명백히 잘못되었다는 점에 동의합니다.