'모든'의 논리적 오류 | 6평 미적 28번
※ 6월 10일, 글 내용을 좀 더 상세하게 영상으로 풀어서 올렸습니다.
0
독해와 논리를 가르치는 이해황입니다.
이번 미적 28번 논란이 흥미로워서 짧게 글을 써봅니다.
1
실수 전체의 집합에서 연속인 함수 f(x)에 대하여
{f(x)}²+2f(x)+1이 x=1에 대칭이라면,
{f(x)}²+2f(x)+1 = {f(x)+1}²이므로
{f(x)+1}² = {f(2-x)+1}²이 성립합니다.
따라서 "모든 x에 대하여 f(x)=f(2-x) or f(2-x)=-2-f(x)"라고 할 수 있습니다.
그런데 이로부터 "모든 x에 대하여 f(x)=f(2-x) or 모든 x에 대하여 f(2-x)=-2-f(x)"라고 할 수는 없습니다.
2
"모든 사람은 남성이거나 여성이다."가 참일지라도
"모든 사람은 남성이거나 모든 사람은 여성이다."가 도출되지는 않습니다.
왜 그런지 바로 이해가 되는 분들도 있겠지만, 그렇지 못한 분들을 위하여
사람이 p, q 둘만 있는 가능세계1)를 살펴보겠습니다.
각주 1) 가능세계는 2019학년도 수능 국어영역에도 나왔고 PSAT/LEET에 모두 나온 적 있는 중요 논리학 개념입니다. 만약 이 개념을 잘 모른다면 가장 쉽게 이해하는 '가능세계' [두뇌보완계획100] 3분짜리 영상을 참고해주세요.
이때 가능한 세계는 아래 표와 같이 4가지입니다.
"모든 사람은 남성이거나 여성이다."는 w1, w2, w3, w4 모두에서 참입니다.
반면 "모든 사람은 남성이거나 모든 사람은 여성이다."은 w1(모든 사람이 남자)와 w4(모든 사람은 여자)일 때만 참이며 w2, w3일 때는 거짓입니다.
정리하자면, "모든 사람은 남성이거나 모든 사람은 여성이다."가 참이면
"모든 사람은 남성이거나 여성이다."는 참이지만, 그 역은 성립하지 않습니다.
3
논리학자들은 '모든'을 ∀으로, or(이거나)는 ∨으로 나타냅니다. ∀는 all을 뒤집은 것이고, ∨는 or를 뜻하는 라틴어 vel에서 가져온 것입니다. 참고로 and(이고)는 ∨를 뒤집은 ∧으로 나타냅니다.
지금까지의 논의를 기호를 활용하여 간결하게 나타내면 다음과 같습니다.
∀x(Ax∨Bx) ≢ ∀x(Ax)∨∀x(Bx)
구체적으로는 ∀x(Ax∨Bx) ↛ ∀x(Ax)∨∀x(Bx), ∀x(Ax∨Bx) ← ∀x(Ax)∨∀x(Bx)로 분리하여 생각할 수 있습니다.
4
2019학년도 LEET 추리논증에 이러한 변별을 묻는 문제가 나온 적 있습니다. 지금까지의 논의를 잘 따라왔다면, 아래 고난도 문제를 단박에 풀 수 있습니다. 핵심은 ㄷ입니다.
논리훈련이 되어 있지 않은 분들은 ㄷ을 적절하다고 판단합니다. 그런데 ∀x(Ax∨Bx) ↛ ∀x(Ax)∨∀x(Bx)이므로 ㄷ은 적절하지 않습니다. 즉, "모든 환자에게서 병원균 α와 β 중 적어도 하나가 검출된다"가 참이라고 해도, "모든 환자에게서 병원균 α가 검출되거나 모든 환자에게서 병원균 β가 검출된다"가 참이라고 할 수 없습니다. (참고로 정답은 ② ㄴ입니다.)
5
지적 호기심이 있는 분들을 위하여 양화사 분배에 대한 몇 가지 성질을 적어두겠습니다. 2에서 제가 표를 그린 것처럼 가능세계를 중복없이 누락없이 떠올려보면 충분히 혼자 이해할 수 있을 겁니다.
①∃x(Ax∨Bx)≡∃x(Ax)∨∃x(Bx)
②∀x(Ax∧Bx)≡∀x(Ax)∧∀x(Bx)
③∃x(Ax∧Bx)≢∃x(Ax)∧∃x(Bx)
④∀x(Ax∨Bx)≢∀x(Ax)∨∀x(Bx)
이때 ∃는 "어떤 ~가 있다"는 뜻으로, there exists에서 가져온 기호입니다.
참고한 자료
1. 2024대비 6월 모평 미적분 28번 대칭성 풀이의 논리적 오류에 대하여
2. 논리개념 매뉴얼5.0(이해황, 2023) (2의 설명은 이 책에서 가져옴)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
설경vs고경 4
인프라,아웃풋 등등.. 압도적으로 차이 큼?? 개인역량으로 커버칠 수 있?(금융권)
-
ㅋㅋㅋ 병신들 10
모 기하 아조씨가 부탁하신 그림 나왔습니다
-
❤️❤️
-
조예 깊은 쥔장이 직접 말아준 째애즛마,
-
뱃지만 받고 탈릅을..
-
이래봬도 남자임 3
키도 작은..
-
꼴보기싫음 정작 들어가보면 어그로성글 시간낭비만 ㅈㄴ시키고 보나마나 현생에서 산소낭비도 ㅈㄴ할듯
-
고3때 많이 올려봤자 한계가 너무 분명해보임..ㅠ 그리고 수시랑 정시 같이 챙기는...
-
ㅈㄴㅂㅇㅇ닉하고 돌아다니긴할듯
-
기출변형임
-
수험생활할땐 참 재미없던 공부가 대학만 들어가고 할거없어지면 재밌어지는데 저만 그런가요
-
우린 다 깠었는데 오래사귄것도 아님 ㅋㅋㅋㅋㅋ 난 이해불가…
-
본인 초5아래로 기억 아예없음 초등학교때 기억이니 많이 휘발됐을수 있고 기억나는대로...
-
내가 인프피라 그런거 아님
-
존잘존예밖에없네 2
그냥잘걸 가만히 있다가 더 슬퍼졌어
-
나는 별볼일없는 22살 노총각에 현재 수중에 푼돈밖에업는 돈없는남자인데 나랑...
-
미안 제목은 어그로고 물리는 역학만 두번하고 지구는 한번 대충 돌렸는데 그냥 사탐런...
-
참 저능부엉이임? 옹고집전이 따로 없네
-
집에가지말라하면 뭐하냐 12
집인데 이미
-
좀 사라 임마
-
대학은 갔는데 할거없어서 ebs수특 수학 풀고있는사람 손
-
반영되서 나와 어짜피 듄 안봐도 돼 특히 수학
-
돈관련 ㄱㅁ 2
난 ㅈㄴ맛있는 펩시제로 라임을 1플1으로 살수있늣 2329원의 잔고가있음
-
목소리가 진짜 변성기안온 초등학생목소리임 남성호르몬이 부족한것도아니고 골격 꽉꽉...
-
. 아무리 생각해도 잘난 부분이 하나도 없다 ㅜ
-
이게 유행인거야 베베
-
생정생정생정
-
축제때 한 거 재탕이긴 한데 밑글 여르비 보고 나도 해봄
-
돈자랑 ㄱㅁ질은 좀 그래 박탈감 느껴짐
-
??
-
으흐흐흐흐흐흐흐흐흐흐흐흐흫흐흐흐흐흐흐흐흐흐흐흐흐흐흐흐ㅡㅎ흐ㅡ흐흐흐흐흐흐흐흐흐ㅡㅎ흐ㅡ흐...
-
유일하게 하는 가챠겜이 니케인데 신캐 픽업캐 항상 30뽑이내로 뽑음 롤체 전설이도...
-
기만하나할게 2
나 강연금 아직안봄
-
나도 ㄱㅁ해봄 4
그냥 집에가지마 베베
-
리젠 왤케 11
많은거야 베베
-
같이 연습해요
-
연대의대생보다 고대의대생이 처벌을 마니 받는 이유는? 4
고의라서 ㅋㅋㅋㅋㅋㅋㅋ
-
되나여?
-
참나무를 말하는거죠 그리고 그안에는 참나물 너무도 잘어울려요
-
10시간 정도 고민하면 괜찮은거 하나 나오지 않을까
-
재밋을거같아 근데
-
난 진짜 모르겠던디
-
ㄱㅁ 찐막 8
롤체에돈쓴적엄슴
-
나 이대로 수능 6
치지마 베베
-
기만할거 10
-
모두 감사합니다 15
따듯함을 느끼고 가요
-
저기는 얼마나 공부를 잘해야 갈 수 있을까 싶었음
수학까지 잘하시는 국어 강사님...ㄷ
해설강의 찍고 편집할 때면 이 세상 다른 모든 것들이 흥미로워져서 큰일이에요 ㅎㅎ
제가 공부할때와 같은 모습이시군요..
x가 하기 싫을 때는
x보다 더 하기 싫은 것을 찾으면 좋더라고요. ㅋ
오 ㅋㅋ 써먹어 보겠습니다
그저 GOAT...
고맙습니다. :)
와 설명 진짜 잘하시네요. 이해가 쉽게 되네요
고맙습니다. PSAT/LEET 수험생들에게 하도 질문을 많이 받다보니, 자연스럽게 설명이 진화(?)했습니다. ㅋ
비트겐슈타인의 논리철학논고를 통해서 1차 술어논리에 대해 혼자 공부할 때가 떠오르는 글이네요. 잘 읽고 갑니당
재미있게 읽어주셔서 고맙습니다. :)
논고를 통해서 1차술어논리요?
대단하시네…
어찌보면 당연히 여자와 남자가 동시에 존재할수있다는 생각이 드는데 이걸 수학으로 !
집합과 명제를 좀 현란하게 확장해서 수능/PSAT/LEET를 가르치고 있습니다. ㅋ
쉽게 말하면 모든 사람이 남자이거나 여자일수 있다에서 "모든 사람은 남자" or "모든 사람은 여자"가 도출되진 않는다
네, 그리고 "한 명 뽑아봤더니 남자라고, '모든 사람은 남자'라고 단정해서도 안 된다. " 정도를 추가할 수 있습니다.
요새 수학강사는 국어도 잘하네
오르비 신규 수학 강사 이해황입니다. 잘 부탁드립니다.
10대 때 로즈마리 수열을 투고한 적 있습니다.
https://oeis.org/A026644/a026644.html