Farewell[1] : 초전도치
약간의 변심으로, 간단한데 임팩트 있는 스킬 뿌려 놓고 가겠습니다. 은퇴선물..?
제가 풀이 칼럼을 올리지 않은 시점부터 만든게 많은데, 다 끌어안고 가려고 했다만, 저한테 무슨 느낌의 스킬들이 있었는지 적는것도 나쁘지 않을 것 같아서요. 다 계산을 최대한 쉽고 빠르게 하는 방법론이었어요. 이 스킬은 과외 수업 도중 발견한 스킬로, 이름도 그 수업하던 학생이 이렇게 하자고 했습니다.
뭐 아무튼, length(Farewell)=3으로, 다음 글이 마지막 글입니다.
이걸 원래 쓰는 분이 계셨을수도 있고 아닐수도 있고.. 뭐 아무튼, 이제는 제가 글을 올려버렸으니, 산화수에서 산화수법으로 풀어야 하는 문제에 한해서 이렇게 풀지 않으면 손해가 생길겁니다. 원래 이렇게 풀던 분이 있던 없던, 이 풀이도 공론화가 된 풀이는 아닌 것 같기 때문에..
앞으로 이 풀이를 보면 어 초전도치 아니냐? 해주시면 감사하겠습니다.
중요한 부분이 있는데요,
산화수법으로 풀어야 하는 문제에 한해서
산화수법으로 풀어야 하는 문제에 한해서
산화수법으로 풀어야 하는 문제에 한해서
이 방법은 초전도체입니다.
전하량 보존으로 풀 수 있는 산화수 문제의 경우 이 스킬을 사용하면, 전하량 보존을 사용했을때보다 계산량이 같거나 아주약간 큽니다.
이것만으로도 좋긴 합니다. 보통 전하량 보존이 너무 유리하거든요. 산화수법이 유리해 보이는데? 싶었는데 알고보니 전하량 보존이 더 유리했으면 지옥의 계산을 경험하신 학생들이 많을겁니다.
이해하기 쉬운 내용이니, 문제 하나로 끝내겠습니다.
그 전에 간단한 개념 설명을 하겠습니다.
우선 산화수법을 우리가 어떻게 사용하는지 봅시다.
산화수가 변화하는걸 화살표로 표현하고, 원자 A, B가 산화환원 반응에 참여한다고 생각합시다.
그럼 다음과 같이 표기할 수 있을겁니다. 다음 상황은, 원자 A는 산화수가 -1에서 3이 되고, 원자 B는 산화수가 4에서 2가 되는 상황입니다. 그러면 산화수와 계수를 맞추면...
A: -1 -> 3 (x2)
B : 4 -> 2 (x4)
이렇게 표시할 수 있겠죠.
바로 일반화 들어갑니다.
A: a -> b (x m)
B: c -> d (x n)
이런 산화수 변화 상황이 있다고 합시다. 이 식이 성립하려면
n(c-d) = m(b-a) 가 성립해야 할 겁니다. (산화 환원 여부를 몰라도 부호만 반대면 되겠죠?)
전개합니다.
ma + nc = mb + nd
이 꼴이 나오는데요, 다시 위의 예시를 들고와서 이게 뭔 뜻인지 살펴보면..
A: -1 -> 3 (x2)
B : 4 -> 2 (x4)
일반적으로 알려진 방법 대신,
-1 x 2 + 4 x 4 = 3 x 2 + 2 x 4
이런 식으로 왼쪽끼리 곱해서 더하고, 오른쪽끼리 곱해서 더하고.. 를 확인하는 식으로도 산화수 매칭이 성립하는지 확인할 수 있습니다.
일단 이것만 보면 별거 아닌데요..
이항이 가능합니다.
(이래서 이름이 초전도치)
뭔 소리냐면
A: -1 -> 3 (x2)
B : 4 -> 2 (x4)
이걸 A쪽은 -1을 이항하고, B쪽은 2를 이항합니다.
A: 0 -> 4 (x2)
B : 2 -> 0 (x4)
이러면 암산으로도, 이 산화수 매칭이 성립한다는게 확인이 가능하네요.
뭐 아직도 별거 아닌것 같습니다. 이 스킬은 문자가 포함되어 있을 때 그 진국이 나오는데..
이 문항 하나로 끝내고, 여러분들이 연습을 해 주시면 될 것 같습니다.
이 문제가 대표적인 "산화수법이 유리한 문제"인데요,
두번째 조건과 반응식에서 Y의 산화수를 확인하면 우선 다음과 같이 표현할 수 있습니다.
X : ?(m으로 표현됨) -> +n (x1)
Y : +n-1 -> +n (x3)
그리고 세번째 조건을 사용하면 다음과 같이 산화수 변화를 표현할 수 있습니다.
X : +3(n-1) -> +n (x1)
Y : +n-1 -> +n (x3)
여기서 한번 암산으로 어떻게 이항 하면 이쁘게 풀릴지 생각 해 보시는걸 추천드립니다.
(스포방지용 간격)
왼쪽에 n, 오른쪽에 상수를 몰아주는 편이 제일 좋습니다. 이러면 추가 이항이 안 생깁니다. 다음과 같이요.
X : 2n -> 3 (x1)
Y : 0 -> 1 (x3)
이제 (물론 암산으로 충분하지만)
2n x 1 + 0 x 3 = 3 x 1 + 1 x 3
이므로 n = 3입니다.
축하합니다. 이제 여러분들은 231114와 그 강화형 문제들을 암산으로 푸실 수 있습니다. 물론 굳이 암산으로 할 필요는 없고 위 처럼 정형화된 틀에서 이항시켜서 문제를 푸시면 됩니다.
한번 N제를 꺼내서 산화수법 문제를 풀어보면 231114보다 체감상 차이가 더 심할겁니다.
꼭 체화하고 쓰시길 바랍니다. 알고 모르고 시간차가 꽤 납니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
기상 6
-
ㅇㅈ 9
펑
-
맞팔 하실분 2
잡담태그 잘 달아요
-
보실 분 있을까요? 성적은 11222 나왔어요 물론 씹갓용 칼럼은 당연히 아니고...
-
ㅇㅈ 14
펑
-
https://blog.naver.com/pyjlawyer/223364239734...
-
올해 정시준비하려다 크게 데이고 한학기 학교 다니고 군대가서 학종 원서만 넣어보려고...
-
코가 막 가려움 0
재채기가 나올락 말락
-
미자공 친구가 한양대 두바퀴 투어시켜주고 노천극장가서 하냥대 명물 피자를 먹었는데...
-
어제 사실 17
특정을 당할뻔 했어요 대댓글 달리면 안지워진다는걸 어제 알았답니다 이러면서 배우는거겠죠..?
-
서연고서성한중+카포지디유까지 추천해주네 엄... (내 성적표 아님) 그래고 포는...
-
재수생입니다 올해는 꼭 메디컬 가고싶은데 이 성적으로 어디까지 갈 수 있나요?
-
지각이다 3
입에 빵을 물고 달리자
-
요약 : 분만시 문제가 있어 적절한 처치를 시행하였으나 아이가 뇌성마비가 생겼음....
-
뻘글좀 줄여야지 4
너무 많이 썼당
-
1,2번은 별 탈 없이 쓴거같고 3번 수리문제도 풀이과정이랑 정답 다 맞는데 이러면...
-
현재 활동한단 뜻인가요??
-
현역이고 1년동안 시대단과커라 탈거같은데 미적반에서 수12도 해주나요? 현우진도...
-
랑 친구하고 싶다
-
새벽에 인증메타였음? 12
누가인증했나요? 또나만못봤지
-
물리 사탐런 0
재가 지금 고2 모고 맨날 2등급 초반 나오는데 고삼때 사탐런 해야할까요? 가산좀이 좀 크길래...
-
그딴거 없나요
-
오늘도 과탐 등급 질문을 또 합니다 ㅋㅋ (시간 보내기용 ㅠ) 시갤에서 쓴 글 중에...
-
전세계 누구보다 의사를 많이 만나면서도 전세계 누구보다 의사를 못믿는 한국인들이란 도대체....
-
애초에 저거 외운다고 수학문제를 풀 수 있는건 아니잖아
-
기차지나간당 10
칙칙폭폭
-
피곤하고 슬픈 아침 12
-
국어 2.5 수학 5.5 탐구 1.5 영어 0.5 로 하려하는데 어떤가요?
-
내용 연결되는 게 많나요?
-
군수 해야겠음 0
리트 잘칠 자신 있는데(130이상) 현재 학교에서 학점을 개말아먹어서 4.2-3까지...
-
이번에 사탐런 해서 개념은 임정환T 들을건데 도표특강까지 정환쌤껄로 가도...
-
공군입대 때문에 12월 15일 시행되는 kbs 한국어능력시험에 응시할 예정입니다....
-
라고 땅우쌤이 말씀하시던데 (만점기준) 사실인가요?
-
왠지 팝콘각이 보인다
-
오늘 여행간다 0
키키
-
수학잘하는사람은 쎈만하고 자신이 못하고 삼등급정도이하다 마플 ㄱㄱ
-
작수 백분위 77 확통 정병호 비기너스 + 쎈 4점 기출 스타팅 블록 + 카이스...
-
현역 1등급 언매 특강 샘 추천좀 ㄱㄱ
-
시위는 이런과격하고 인간 본성의 동물적본성을 드러내야 그것이 투쟁이고 시위의...
-
예비고3 수학 모고 거의 2등급이고 (한번은 3등급) 미적 노베인데 이정환t 미적...
-
가능세계는 없는거니....
-
화1 1컷 50 사문 1컷 45~46 생윤 40점보다 표점이 낮다는 소문이......
-
올해의 첫 수학 N제를 모두의 친구에게 선물받음
-
힝
-
시른뒈?
-
미적 13, 22, 28 틀리고 1 띄울 것 같은데 영어 듣기 3개랑 43번 틀리고...
-
글 읽는 속도가 남들에 비해 좀 느린 것 같은데 글자수 많은 화작보다 문법 지식을...
존경합니다 논화님 바로 개추 와바박 박았습니다
Goat...
ㅅㅂ 화학은 이런것까지 해야하는구나 역시 물리가 답이네
물리나 화학이나..
역시 수능 화학은
이런 기괴한거까지해야하나
잉 진짜 쉬운데 걍 이항하고 곱하면 끝나니깐..
화2 칼럼도 부탁드립니다
쉽고좋은데 댓글공작오지네요 저런거때문에 회학선택자 줄어드는거임
지금까지 올린 스킬중에 제일 쉬움ㅇㅇ...
그러면 화학이 ㅈㄴ어려워서 하면 안되는 과목같잖아요;
초전도치야 고마워!
진짜신기하네요
처음엔 어 은근 복잡하지 않나? 싶었는데 이항이 되는게 진짜 괜찮네요 좋은 스킬인듯 ㅎㅎ
초전도치야고마워
이게 개쓸데없는 지엽스킬처럼 느껴진다면 기출/n제 학습을 안해본게아닐까요
이거보다 쉽게 설명할 수 있는 방법도 없고 적용 방법도 간단하고 여타 강사들마냥 스킬 사용 조건 대충 규정해놓은 것도 아니고 스킬 사용시에 유의미한 시간절약이 가능하고
원래 과탐 영역에서의 스킬이라는 게 “훈련되면 특정 상황에서 무지성으로 적용”해서 시간을 절약할 수 있기 때문에 의미가 있는 것인데(평소에 사고력을 사용해서 푸는 데 걸리던 시간을 절약할 수 있으므로) 그 의미와 필요성에 대해 스스로 생각을 안 해보는 사람들이 생각보다 많음
미지수가 있더라도 이항한 결과를 적어서 세로로 계산하는 것보다 산화수 차를 바로 계산하는게 더 빠르지 않나요..? 위 상황에서도 산화수 차가 2n-3, 1인게 바로 보이고요..
저문제가 쉬워서 그럼