(미적?) 재미있는거 하나 더 투척
이건 어려우니 기한도 2월 29일까지로 하고 포상도 5천덕으로 함
참고로 저 조건은 a값을 제시한다와 같은 것은 안됩니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
사회나가면 중=경 이 맞나요?
-
분만과 연관된 의료분쟁시 환자에게 국가가 3000만엔 전액지원 과실있든 과실없든...
-
가채점 수능 0
아니제가 다시확인해보니까 가채점표에 지구과학 정답을 19개만 적엇더라고요… 가채점...
-
실검 11위가 애기임
-
아웃소싱 지문 -기 때문이다랑 -로 움직인다 답 어케 쓰셨나요...
-
진짜 누구보다 열심히 가르쳐줄 자신 있는데.. 여선생님만 구해요<여기서 절반쯤...
-
내가 에타에 올린 글을 릴스로 누가 퍼갔는데 조회수가 409만임 ㅋㅋㅋㅋㅋㅋㅋ 이게뭐노
-
올리는사람 고도의 문까인건가 예전에 의대얘기만 많이 했던거같은데
-
한민족의 적 이토 히로부미를 직접 사살하신 안중근 의사님 당신과 같은 분들 덕분에...
-
왜 클릭?
-
이제는 일반적 꿀은 공군 하나만 남아버린 해경, 의무소방, 의경(2015년 이후)...
-
그때 내겐 쌓기나무가 231122급 킬러였는데 뒷면이상상이안가요
-
눈 1
전자 압승
-
심심한데 4
질문받음 ㄱㄱ
-
하던 걸 못 하게 되니까 감질난다고 해야 하나... 빨리 물리 가져와
-
재밌는 사실 0
있으면 나도 알려줘봐바
-
맛있는 음식짤 2
-
사실 나는 유명한 11
호구임
-
난 똥글만 썼음 ㅇㅇ 29
진짜 존나많이 썼음 ㅇㅇ...
-
의사 7
설마 2글자만 올려도 뭔 일 나나요?
-
리젠이 없뇨 4
다시 감뇨
-
현재 재수를 준비할까 생각중인 사람인데요…..국어가 개십창이나구 수학도 그리...
-
덕코주셈 10
ㄱㄱ
-
술술 풀리는 문제를 푸는게 아닌 진짜 모르는거에대한 공부를 하다가 어느순간 머리...
-
현재메타 2
의사 vs 롤 치열하노
-
최우제 티원 나가고 11
티원산 매물중에 폼 유지 되는애들 없는데 얘는 어떨것 같냐…?
-
무도야 그립다 ..1박2일..
-
대충 뭔지 아시죠?
-
1일1똥은 부담스럽군
-
후회없이.
-
장학금 ㅇㅈ 0
네이밍이 좀 특이하긴 한데 연구소 차리고 과외 매출 탈세 1도 안하고 싹 다 신고해서 받음
-
그래도 가고 싶다... 이번 여름에 간 거의 60 먹은 노엘이 하는 하플버 콘서트도 좋았는데..
-
수열의 극한 자작 문제 15
일단 답은 4인데, 자작이긴 한데.. 명확한 풀이를 모르겠어서 올립니다 ㅌㅌ
-
팔로잉 천 빼기 90 인지라.... 딱히 잡담해제도 안함
-
눈알 빠질거 같아요 12
오늘 하루종일 기출같은거 뒤져가면서 유사문제 찾고 왔음
-
요즘 3
조금만 놀아도 너무 피곤함 나 수험생활 어케 버틴거지...
-
아이디어는 있는데 문제는 아이디어를 일러스트로 구현할 기술력이 없음... 내가...
-
어허 쯧쯔릇쯧쯧
-
음하핫
-
인강 들으면 되려나...토익밖에 안쳐봐서 감이 안잡힘
-
내년에 앞자리 바뀌신다는 이야기 들으니 둘 다 벙찜 흠..
-
2등이면 걍 합격임? 모집인원 변동 없음
-
왜 싸운거임? 대충 상황 3줄 요약점
-
나도... 2
언젠가 채영님을 실물 영접 하는날 올까..
-
같이 밥먹을사람이없고, 얘기할사람이 없다는건. . . ㅜ 딱나네
-
난 어차피 그곳에 있는게 제일 중요해서 선예매는 실패했으니 스탠딩 앞번호대는 다...
막 수학 여러단원 섞고 언어 사회 윤리 과학 영어 음악 체육 코딩 등 다른과목 개념과 섞어서 개지랄같은 극악난이도 문제 많이 만들어서 책을 내봐 살게 의외로 극악난이도 수학문제집 수요가 꽤있다?? 그런거 푸는거 좋아하는 사람들 꽤많어 인도iit 중국북경대 프랑스 바칼로레아 입학문제 참고해봐
아조씨 옛날엔 안이랬잖아요 왜이러세요;;
이건 뭐임 ㅅㅂㅋㅋㅋㅋㅋ
설마 기억해서 답 올리는 틀딱들이 있겠어...?
논술 대비 문제인가여...? 개어렵네요.. 어디서부터 시작해야할지 모르겠어요ㅋㅋ
예전에 만든 3점짜리 문제 검토받다가 의문점이 생겨서 수학 괴물 한분께 물어봤다가 나타난 난제였답니다...
저거 문제화 시킨 사람 저랑 같은 인간이 아닌거 같음요
일단 접근 팁은 f(x+2)=4f(x)를 만족시키더라도 왜 지수함수꼴이 아니지? 에서 시작하시는게 좋다고 봅니다
f(1)=a^b마렵네요..
f(p)×f(q)=f(pq)÷a^b
모든실수pq
제 의도와는 다릅니다
식의 형태가 아닌 짧은 글귀 하나만으로 끝납니다
극값X?
f'(x)=0의 실근이 존재하지 않는다
오 이거인듯 이러면 반례가 안만들어짐
f(x/2)^2=f(x) 입니다
찍)f는 아래볼록
반례확인: 2^x+kx(x-2)(x-2/5). k 조절시 0~2 전구간 아래볼록 가능
함수 f는 실수 전체 집합에서 정의된 미분가능 함수이기 때문에 반례로 제시하신 함수는 f(x+2)=4f(x)가 성립이 안됩니다
찍2)f(x+k)=2^k*f(x)(k는 아무 무리수)
루트2라 치면: 2와 루트2를 정수배해 더해서 무한소 만들고 조밀성+연속성=완비성으로 모든 수에 적용시키기