2024년 양서고 수학2 중간시험 해설
#1
눈을 똑바로 뜹시다!
#2
다항함수 조건이 주어졌을 때 위와 같이 식을 작성해보는 것은 기본입니다.
때로 저러한 형태의 함수를 생성함수라고도 부릅니다.
작성 후 (가) 조건에서 최고차항 계수, 차수 결정짓고
(나) 조건으로 나머지 결정하시면 되겠습니다.
이것이 실수 전체의 집합에서 미분 가능한 함수 f(x)의 뜻이며
다항함수는 이를 만족하는 종류의 함수 중 하나입니다.
위의 논리에 따라 함수 f(x)가 x=a에서 미분 가능하다면
함수 f(x)는 x=a에서 연속임을 알 수 있습니다.
#3
인수분해 각이 보이지?
혹은 분모와 분자가 모두 x=1에서 미분 가능하고
0을 함숫값으로 가지는 것을 알기 때문에
각각에 미분계수의 정의를 적용할 수도 있겠습니다.
물론 이는 수학2 범위를 지난 (2015 개정 교육과정 기준)
미적분 범위의 '합성함수 미분법'을 학습해야 받아들일 수 있기에
생략하겠습니다.
#4
전형적인 문항입니다.
고등학교 교육과정에서는 독립 변수가 1개인
1변수함수만을 다루기 때문에 보기 어려운 조건식일 수도 있는데
그래서 우리는 2변수함수처럼 보이는 (가) 조건을
1변수함수로 바라볼 시도를 해볼 수 있습니다.
(나) 조건과 묻는 값에 모두 미분계수가 존재하니
미분계수에 관한 생각을 해보기 위해 도함수의 정의를 떠올려보십시다.
이때 f(x)는 실수 전체의 집합에서 미분 가능한 함수이므로
f'(x)가 임의의 실수 x에 대해 수렴해야 합니다.
즉, [f(h)+3]/h가 h가 0으로 갈 때 수렴해야 합니다.
따라서 f'(x)을 완전하게 작성할 수가 있습니다.
(f(x)에 대하여)
#5
그래프 그렸으니 이제 y=x+k 움직여봅시다.
이제 ㄱㄴㄷ 하나씩 판단해보시면 됩니다.
연속의 정의는 우극한, 좌극한, 함숫값 존재하고 셋 모두 같다 입니다.
엄밀한 정의는 다음과 같습니다.
생각해보면 2015 개정 교육과정 기준 부등식을 재밌게 다루는 부분이
고등학교 1학년 때 공부하는 수학(상) 부등식 단원이 유일한 것 같은데
이것이 대학교 1학년 때 공부하는 함수의 극한의 엄밀한 정의 (입실론-델타 논법) 로
이어지는 부분이 매력적으로 다가오기도 합니다.
#6
좌표평면에서의 함수 y=f(x)의 그래프와 함수 y=g(x)의 그래프의
교점의 x좌표는 x에 관한 방정식 f(x)=g(x)의 실근과 같습니다.
두 점 A, B 중 더 왼쪽에 있는 점을 A라고 합시다.
점 A_1과 B_1은 각각 점 A와 B를 y축에 대칭이동한 것이니
y좌표는 같고 x좌표의 부호가 반대일 것입니다.
(대충 A가 A, B가 A_1, C가 B, D가 B_1인 상황)
사각형 ABA_1B_1은 사다리꼴입니다.
따라서 사다리꼴의 넓이 공식 (평행사변형 2개를 이어붙여 절반 구하는) 에 따라
네 점을 지나는 원은 직관적으로 살펴볼 때...
y축에 대칭일 것이므로 원의 중심은 y축 위에 있을 것이고
선분 A_1B의 수직이등분선은 이 원의 중심을 지날 것이므로
(중학도형, 원에서 현의 수직이등분선은 원의 중심을 지난다)
선분 A_1B의 중점 M을 구하고 직선 A_1B의 기울기와 곱해서 -1이 되는
(두 직선 수직 조건, 기울기의 곱이 -1)
기울기 값을 구하여 이 직선이 점 C를 지날 것이라고 설정할 수 있겠습니다.
놀랍게도 원의 중심은 t값의 영향을 받지 않는 정점이었네요!
이후 원의 반지름을 구하여 넓이를 구해주면
정답을 구할 수 있었습니다.
논리 자체가 어렵진 않은데 계산이 복잡했고
따라서 집중해서 실수를 막거나
한 번 실수 한 다음에 빠르게 어디에서 잘못 되었는지를 찾는 것이
도움이 될 수 있었을 것입니다.
검토를 잘 하기 위해선 처음 풀이를 작성할 때 논리 정연하고
또박또박 작성해두는 것이 도움이 될 수 있습니다.
#7
시험지의 첫 번째 추론 문항입니다.
교과서 혹은 학교에서 다루었던 자료에
직접 연계가 되어있었다면 답만 내고 넘어가면 되지만
그렇지 않았다면 후순위로 미루고 푸는 것이 나았을 것이라 생각합니다.
우선 (가) 조건부터 정리해줍시다.
두 가지 이상의 경우가 발생하여
머리를 복잡하게 만들 때는
경우를 분류해주면 됩니다.
하나씩 고려해주면 됩니다, 굳이 한 번에 양자역학적으로
바라보려 하실 필요 없습니다.
먼저 a>0이고 b=2일 때를 살펴보십시다.
대충 이런 느낌으로 그래프가 생깁니다.
앞선 5번 문제와 마찬가지로 k를 열심히 움직여봅시다.
때로 이렇게 한 시험지에
비슷한 사고 과정이 쓰일 때가 있습니다.
대표적으로 2022학년도 6월 시험지에서도
미적분 29번과 30번 모두 음함수 미분법으로 접근했을 때
단순 계산으로 답을 낼 수 있었습니다.
k를 움직이다 보니 곡선 f(x) 입장에서는
방정식 f(x)=x+k 가 중근을 가질 때 g(k)값이 변화하고
곡선 |f(x)| 입장에서는 방정식 -f(x)=x+k가 중근을 가질 때나
방정식 f(x)=0의 실근이 방정식 x+k=0의 실근이 될 때
h(k)값이 변화할 것임을 확인할 수 있습니다.
정리해봅시다.
함수 g(k)는 k=-1/4a일 때 불연속입니다.
함수 h(k)는 k=9/4a or k=0 or k=a/2일 때
불연속입니다.
(나) 조건에 따라 k=3일 때 g는 연속이지만 h는 불연속이어야하므로
-1/4a는 3이 아니지만 9/4a나 -a/2는 3이 되어야 함을 알 수 있습니다.
우리는 a>0인 경우를 먼저 살펴보고 있으므로
a=3/4임을 확인할 수 있습니다.
12f(1)값은 9+24=33이 됩니다.
이제 a<0이고 b=-2일 때를 살펴봅시다.
대충 다음과 같은 상황임을 확인할 수 있습니다.
비슷한 방식으로 접근해봅시다.
k를 적당히 움직이며 직선 y=x+k와
두 곡선의 그래프를 함께 살펴보면...
g(k)는 마찬가지로 f(x)의 그래프에 직선이 접할 때,
h(k)는 |f(x)|의 그래프에 직선이 접하거나
방정식 f(x)=0의 해가 방정식 x+k=0의 해가 될 때
불연속입니다. 정리해봅시다.
g는 k=-9/4a일 때 불연속이고
h는 마찬가지로 k=-9/4a일 때 혹은 k=-2/a일 때 불연속입니다.
k=3일 때 g도 불연속이면 안되므로
a<0일 때에는 k=-2/a이 유일한 후보일 것이고
이때 a=-2/3으로서 a<0 조건을 만족합니다.
따라서 12f(1)값은 33 혹은 -32이므로
최댓값 33과 최솟값 -32를 더하면
정답은 1 되겠습니다.
#8
문제 조건에 따라 f와 g는 최고차항 계수가 1이고
x-1을 인수로 지니는 삼차함수 되겠습니다.
g'(1)도 F(1)도 0이 아니므로 두 삼차함수 f, g의 그래프는
점 (1, 0)을 관통할 것입니다.
제곱인수와 x축에 접하는 다항함수의 그래프 사이 관계는
한완수에서 학습 가능했습니다.
함수가 여러개이므로 단순하게 바라보기 위해서
f, g, h를 모두 표현할 수 있는 F와 G를 중심으로 접근해봅시다.
(나) 조건으로 주어진 항등식의 양변을 미분할 때는
미적분에서 학습할 수 있는 '합성함수 미분법'이 들어오긴 했는데
수학2에서는 아래와 같이 해결할 수 있겠습니다.
이제 (가) 조건의 h'(1)=4를 사용하기 위해
위에서 얻은 식의 양변에 x=1을 대입해주면 다음과 같습니다.
따라서 k_1은 5 이하의 정수일 것입니다.
이에 따라 f(2)의 최솟값은 5입니다.
k_1에 다른 제약이 걸려야 f(2)의 최댓값이 존재할텐데,
(나) 조건을 살펴보는 것 외엔 따로 할 만해보이는 것이 없으니
(나) 조건을 다시 한 번 살펴봅시다.
음~ 잘 모르겠습니다.
근데 f(2)는 자연수이고 최솟값이 5인데
최댓값과의 합으로 제시된 선지 중 가장 큰 값이
11입니다.
그럼 대충 f(2)의 최댓값은 6일 것입니다.
왜냐하면 7을 넘어가는 순간 합이 12가 넘어가기 때문에
선지에 답이 존재하지 않습니다.
일단 5번을 찍고 넘어갑니다.
#논술형 1번
1-1) 3번입니다.
부분 극한을 취할 수 없습니다.
함수의 극한의 성질에 따라
사칙연산을 진행할 때에는
각각이 수렴할 때 한 번에 lim를 분배해주어야 합니다.
1-2) 극한이나 어떤 연산을 할 때
덧셈, 뺄셈보다는 곱셈, 나눗셈이 더 도움이 될 때가 있습니다.
#논술형 2번
#논술형 3번
n이 정수이므로 x가 정수일 때의 f(x)값만
조사해보면 되었습니다.
f'(x)>0이므로 f(x)는 실수 전체의 집합에서 증가합니다.
f(1)f(2)<0이므로 사잇값 정리에 따라
구간 (1, 2) 에 방정식 f(x)=0의 실근이 존재함을 알 수 있습니다.
따라서 n=1입니다.
#논술형 4번
ㄱ은 평균변화율의 우극한이고
ㄴ은 미분계수이고
ㄷ은 h->0+일 때나 h->0-일 때나
평균변화율의 우극한과 좌극한의 평균이 됩니다.
대칭평균변화율이라고 부르기도 합니다.
ㄱ과 ㄷ의 경우 다음과 같은 반례를 떠올려볼 수 있으며
ㄷ의 경우 2022학년도 9월 22번도 비슷한 맥락에서 생각해볼 수 있습니다.
#논술형 5번
다항함수 조건은 때로 다음과 같은 생성함수식을 작성함으로써
최고차항의 차수와 계수를 비교하며 풀이를 시작할 수 있습니다.
(가) 조건부터 살펴봅시다.
전형적인 논리로 f(0), f'(0)값을 확인할 수 있습니다.
이제 (나) 조건을 살펴봅시다.
함수 g가 주인공이라 생각하면 g에 대해 식을 정리해볼 수 있습니다.
이는 다음 문항들에서의 논리와 정확히 일치합니다.
(순서대로)
- 2017학년도 수능 나형 30번
- 2022학년도 수능 12번
- 2023학년도 수능 22번
- 2024학년도 6월 미적분 28번
대충 아래 글 참고
* 오류가 있을 수 있습니다.
지적 바랍니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
애들 너무 속도가 빠른데
-
하.. 인싸되고싶어울었어
-
홈트 40분완뇨 1
좀 더 하고 씻고 자야겟음뇨
-
흠..
-
재고가 어느 지점에나 쌓여있음
-
저도 질받 7
아무거나 고고
-
매수실시
-
제 친구가 한양대 다니는데 학교에서 과외 연결 해줬다는데 한양대는 원래 그런가요?...
-
손 시렵지만 15
오르비를 멈출수 없는나
-
이짓거릴안한다면 더 빠르게 읽을수있을거같은데 예전부터 이래왔어서 뇌빼고 나무위키나...
-
언매미적영어물리지구 100 96 1 48 42 인설의 가능한 점수인가?
-
이재용
-
상위 직종비율은 이과 65 : 문과 35다 그랬으면 좋겠네요 ㅋㅋ
-
나도 질받 8
-
놀라운 사실: 10
어제 산 바나나킥 다 못먹음 좀따 방 다 치우고 먹어야지
-
아...
-
13번인가 그 f(x) g(x) 다항함수고 마지막에 정적분 0부터 1/2 구하는거...
-
안됨뇨
-
03인데 의대 갈 가치가 없다고 보시는 분들도 많은 거 같네요.. 졸업할때까지...
-
질문받아드립니다 13
ㄱㄱ
-
왜?? 왜?????
-
강원지역의 한 육군 부대에서 훈련 중 다친 일병이 끝내 사망했다. 26일 군 당국에...
-
내가 제설작업해야 하거든
-
뭐 첫눈? 2
눈 왜 벌써와
-
눈오는데? 10
진눈깨비에 가깝긴 하지만
-
써도 도움이 많이 될진 모르겠네 일단 열심히 써볼게요
-
뭔 ㅋㅋㅋ 17
서울대-로스쿨 테크가 의사보다 상방높다고 티나는 바이럴을 하고 앉았네 그렇게 치면...
-
박카스 젤리 맛있다 13
오...
-
누구보다도 최우제 쉴드 개열심히 치던사람인거 오르비에서 모르는사람 없음 다들...
-
이룬거도 겁나 많은 성골유스 + 열광하기 좋은 플레이스타일 깔끔하지 못 한 마무리로...
-
문과 라인 봐주세요.. 11
이거 서성한 되겠죠….? 중대 논술 안갔는데….ㅜ 연고 하위과 상향 지원도 가능한가요….?
-
ㅈㄱㄴ?
-
건대 공대나 교차지원으로 중경외시 문과중에 가능한 곳 있을까요..?
-
옆사람 성적 볼 때 더 멘탈 나갈듯
-
공부할땐 n제 후기가 정말 필요했는데
-
이거 뭐 다음날 훈련이 있어서 좀 총기손질이나 이런걸로 제한하는거 제외하고 간부들이...
-
내가 제일 인지도가 높나 얼마전까지만 해도 월붕이 진화노예 예나오리 등등이었는데
-
2022년, S 모 고등학교(자사고, 안 가는 걸 추천)에 다니고 있던...
-
공통틀이 유리한거임? 본인 미적1틀 공통 2틀임
-
솔직히 현역 정시는 수시보다 높게 가면 성공아님? 12
그렇다고 해주시면 안될까요..
-
1차 세탁 시도 -> 민심 그대로 -> 패선생님 당황 -> 2차 세탁 본인이...
-
의사 망할일은없음 ㅋㅋ 13
증원된다고해도 뭐 예전만못하다정도지 여전히 고소득자일거고 일반회사원만큼 떨어질일은...
-
연애 두려운점 4
내가 한번 정을 준 사람한테서 정을 진짜 더럽게 못 떼서 ㄹㅇ 간이고 쓸개고 다...
-
질받 18
-
스울대 가고싶다 8
스울대 아니면 도저히 만족을 못하겠다
-
수능끝나고 4
할거 없는데 추천좀.. 게임은 안 좋아해요
-
대체 왜 이딴 시스템을고집하는거임? 여론조작이 하루이틀도 아니고 심하네 참
-
나두 무물보 24
-
지금 몇점 이하 안 나오면 실패한다 몇점 이상부터만 할 수 있는 일이다 이거 하려면...
이게 양서고
예전에 태제대인가 거기간사람임?
네, 현재 태재대학교 혁신기초학부 재학 중입니다!
양서고 친구 국어시험 직전이라길래 시험범위를 봐줬는데
고1인데 수특지문 뭉탱이로 주고 시험내겠다고 한거에서 충격먹음...
자습 시간도 그렇고 쉽지 않은 것 같더라고요... 괜히 대학 잘 보내는 고등학교 중 하나인 것이 아닌 듯합니다
문제도 궁금하네요 ㅋㅋㅋㅋㅋ
공유 하고 싶지만 안됩니다 ㅋㅋㅋㅋ