다소 늦은 6모 기하 28 29 30 해설
수학 과외를 하다 보니 기하 수요가 매우 적지만,
공급은 더더욱 적다는 것을 깨달아서...
모고 해설 올리고 나중에 기회 되면 문제 제작도 조금 하면서
기하 자료 공급을 약간이나마 늘려 보려 합니다
일단 조금이라도 신뢰감을 얻기 위해서
24학년도 수능 기하 100점 인증 먼저 하고
조금 늦긴 했지만
6모 기하 28 29 30 해설 시작 하겠습니다.
28.
일단 점 A,B를 잡고, | OP |=1 과 | BQ |=3 을 해석해 원 두개를 그립니다.
그 다음에 AP ㆍ ( QA + QP ) = 0 을 해석해야 하는데,
전개를 하는 것보다는 내적한 값이 0인 것을 수직하다 라는 의미로 해석하는 것이 더 좋겠다는 생각이 듭니다.
그래서 일단 P를 아무데나 그려서, 저 수식을 만족한다는 것이 정확히 어떤 의미인지 알아보고자 합니다.
P를 먼저 잡고 나서 Q가 어떤 점이 되어야 위 수식을 만족하나 고민을 해 보면,
Q가 PA 의 수직이등분선 위에 있어야 한다는 사실을 알 수 있습니다.
( QA + QP = 2 QM , QM과 AP가 수직을 사용하셔도 되고,
그냥 정사영 느낌으로 내적 값 생각해 보시다가 Q 찾으셔도 됩니다)
PQ 의 값이 최소가 되는 점을 찾고 있으니 수직이등분선과 원의 교점 중 밑에 부분이 Q라는 것도 알 수 있겠죠.
그리고, PA의 수직이등분선은 곧 원의 현의 수직이등분선이기 때문에,
그 선이 원의 중심이자 원점인 O를 지나간다는 점도 체크하시면 좋습니다.
그 다음에 P랑 Q랑 자취를 고민해 보시는 것도 꽤나 자연스러울 겁니다.
그런데 안타깝게도, P, Q의 자취를 생각해 보면 정확히 언제가 최소인지 감을 잡기가 쉽지는 않습니다.
그래서 두 점 모두 움직이는 상태로 해석하는 것이 아닌,
다른 상황으로 문제를 조금 바꿔야 한다는 것을 알 수 있습니다.
그래서 PQ 를 어떻게 바꿔야 고민하다 보면 AQ = PQ라는 사실을 알 수 있습니다.
이렇게 바꾸는 것을 발견하시고 나면 A가 움직이지 않는 정점이기 때문에 문제를 훨씬 편하게 풀 수 있죠.
( 자취 고민을 안하시고 AQ = PQ 바로 발견하시는 경우도 많을 것 같습니다.
말했다시피 A가 정점이라 잘 진행되고 있다는 느낌을 강하게 받거든요 )
그럼 이제 Q가 어디인지 바로 감이 오실텐데,
A에서 가장 가까운 점인 (1,-2) 라는 것을 알 수 있습니다. ( BA의 연장선과 원의 교점 )
이렇게 즐거운 상황에서 항상 잠깐 체크하면 좋을 부분이,
Q가 (1,-2)에 가게 해주는 P가 실제로 존재하는가를 생각해 보시는 것입니다.
A를 QO 에 대칭시킨 위치에 P가 있으면 Q가 (1,-2)에 성공적으로 갈 수 있다는 점을 알 수 있습니다.
이제 P와 Q가 위의 보라색 위치에 있다고 생각하고 풀어도 되겠지요.
제가 이 문제를 풀때는 위 그림으로 그냥 풀었는데, 만약 그림이 점점 복잡해져서 푸는 속도가 느려지면
그림을 단순화시켜서 다시 한번 중요한 부분만 그려 보는 것도 괜찮습니다.
다음과 같이요. (밑처럼 똑같이 안하시고 OAQ만 그리시는 등 원하시는 부분만 그려도 괜찮아요)
그럼 마지막으로 AP ㆍ BQ 값을 구하는 것만 남았는데,
BQ x AH x 2로 처리 하겠습니다.
삼각형 OAQ의 비율인 1:2: 루트5 를 위의 모든 삼각형에서 사용하셔도 된다는 점을 알 수 있습니다.
(저런 직각직각한 상황에 익숙해지셔야 돼요, 생각보다 시간이 오래 걸리는 사람이 많더라구요)
그래서
답은 3 * 0.4 * 2 = 12/5 => 3번
29.
뭔가 어려워 보이죠. 근데 풀어 보면 생각보다 쉽습니다.
절대값도 들어가 있어서 경우를 나누어야 할 것 같다는 생각이 자연스럽게 드네요.
일단 절댓값 안의 식 부호를 따져서 그림부터 그려 보겠습니다.
오른쪽 식에 초점을 맞춰 그리고 나면 부등식 범위가 큰 영향을 안주고,
깔끔히 그려 지는 것을 확인할 수 있습니다.
그림을 그린 후 A, B, C, D가 아무 점은 아닐 것이고, 초점이면 좋겠다는 생각을 가지고 읽으면 좋습니다.
그리고 P에 관한 부분에서, P가 위의 두번째 식이 나타내는 타원 위에 있다는 것과
PC+PD가 일정해야 하므로 추측했던 대로 실제로 C와 D가 타원의 초점이고,
장축의 길이가 루트5라는 것도 알게 되죠.
초점의 위치를 계산하면,
c=1/2,
쌍곡선의 초점도 구해 보면
이므로 쌍곡선의 초점은 3/2 = c+1 이고, A와 B도 실제로 초점임을 확인할 수 있습니다.
AQ=10, QB=AQ+2=12, AB=3
답=25 가 나옵니다.
30.
일단 쌍곡선 그려 놓고 저 수식의 의미를 고민해 보고자 합니다.
초점 위치와 주축 길이를 모두 알기 때문에 쌍곡선 방정식을 적으시는 분도 있을텐데, 적으셔도 되지만
저라면 굳이 방정식을 적지 않고, 나중에 필요할 경우 식을 적을 수 있다 정도로 기억해 놓고 넘어갈 것 같습니다.
저 수식의 의미가 더 궁금하거든요..
PF<PF'이라고 했으니, P가 오른쪽 곡선 위에 있다는 것을 알고 있습니다.
그래서 일단 P를 아무데나 찍겠습니다.
그리고 나서 식을 살펴보면, 괄호 안의 ( |FP|+1 ) 이 사실은 벡터가 아니라 숫자라는 사실을 알 수 있습니다.
Q 위치를 고민해 보면, F'Q와 QP가 같은 방향이여야 하므로 일단 PF' 위에 Q가 있다는 사실을 알게 됩니다.
그림을 보면
1) 쌍곡선 성질을 이용해야겠다는 생각이 납니다. PF 길이를 x로 두겠습니다.
또한 Q의 위치를 우리가 정확히 모르고 있다는 생각이 들어서,
2) Q 위치를 정확히 알고 싶다는 생각이 납니다.
P는 움직이지만 우리가 위치를 알고 있는 점 (F로부터 거리가 x인 점)이고
Q는 (수식에 의해서) 정해져 있지만 우리가 위치를 모르는 점입니다.
이럴 때 정해져 있지만 위치를 모르는 점의 위치를 수학적으로 정확히 표현하려는 생각을 하시면 좋습니다.
문제의 식을 이용해서 수학적으로 정확히 Q를 표현할 수 있죠
(F'으로부터 거리가 a인 점, a를 구해 봅시다)
(x+1)a=5(x+6-a)
식 보고 순간 미지수가 많아서 당황할 수 있는데,
방정식을 풀 때, 우리가 구하는 미지수가 무엇인지 정리해 보시면 좋습니다.
문자지만 상수 취급할 수 있는 것들은 숫자라 생각하고 간단히 취급해도 되고요.
이 경우에는 a가 미지수입니다.
따라서
(x+6)a=5(x+6)
a=5
Q의 자취는 F'을 지나고, 반지름이 5인 원(의 일부)가 됩니다.
P의 위치에 따라서 그려질 수 있나 아닌지가 결정되겠지요.
답은 A,F',Q가 일직선일 때
|AQ|=AF'+F'Q=5+5=10
(엄밀하진 않습니다 다음 문단 참고)
28번에서 이야기했듯이 실제로 만족하는 점이 존재하나 고민해 보셔도 좋습니다.
이 경우에는 점근선 위치를 고민해보시면서
실제로 A,F',Q 가 일직선이 될 수 있나 생각하시면 됩니다.
점근선의 기울기가 충분히 크므로(정확히 말하자면 3/4보다 크므로) 적절한 P가 존재할 수 있고, 잘 만족합니다.
(근데 한번 더 생각하면 범위를 이유로 최댓값이 일직선이 되지 않을 경우에는 엄밀히 말하면 최댓값이 존재하지 않아 신경쓰지 않아도 됩니다)
위 습관은 장기적으로 오답률을 낮추는데 도움이 되지만
이 문제에서는 결과적으로 그냥 별 생각 없이
10을 답으로 쓰셔도 큰 문제는 없을 듯 합니다.
막 고정 1등급 아니시면 이런 부분보다는
10까지 구하는 과정을 더 살펴 보시는게 도움되실 것 같아요.
tip)
만약 이렇게 풀 생각을 못하신 분이라면,
A와 여러 핵심적인 점들을 연결해 보다가 AF'이 5인 것을 발견하시면
답을 찍는데 도움이 될 것 같습니다.
개인적으로 AF'=5 만 가지고도 |AQ|를 AF'+F'Q로 나누고 (너무 깔끔하니까요)
Q의 자취를 (여러 이차곡선이나 직선이라는 후보 중) 원이라고 추측할만 하다고 생각합니다.
당연히 정석대로 푸시는게 가장 좋긴 합니다만,
시험에서는 가끔씩 이런 추측 한번이 시험 운영에 좋은 영향을 줄 때가 있습니다.
끝
기하스럽게 문제 잘 낸것 같아요
계산이 다 깔끔해서 기분 좋았습니다
29번 어려워 보이는데 생각보다 깔끔하게 쉬워서 신기했어여
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋아요 0 답글 달기 신고
-
좋아요 0 답글 달기 신고
-
1년다닌 학원 담임쌤이 난 진학사 안보는데? 메가 자체 프로그램돌려 라고...
-
엄마가 이거 신청했던데 이것만 해도 충분?
-
늘리면 어떻게 되는지 사실 나도 궁금함
-
많이 반영될까요??ㅜㅜ 이번에 한양대랑 연세대도 추가됐던데 제가 한양대 공대가...
-
확통 진짜 너무 어려운데 그냥 문과여도 기하 괜찮나요? 그리고 도형 못해도 극복 가능한 수준이에요?
-
언매 87 미적 84 영어 3 물리 35 생명 27 가채점 결과 이정도인데 어느대학...
-
한 말씀 올립니다 34
지난 5월 북한에서 처음으로 오물 풍선을 날려보내던 날을 기억하시나요? 한밤중에...
-
바이든 '아픈손가락' 차남 헌터 사면…애끓는 부정에 입장 번복 6
(서울=연합뉴스) 임화섭 기자 = 퇴임을 한달 남짓 남겨둔 조 바이든(82) 미국...
-
신용선T 0
현강 들어보신분 문학, 독서 가르치시는 방식 궁금해요
-
얼리버드 기상 2
-
수능 수학 공부 0
2등급 베이스라고 치고 6평 전까지 하루에 2시간씩만 할애가 가능하면 어떤 걸...
-
에리카 다닌 리카
-
25수능의 문학 지문 구조를 일컫는 말이다.
-
가보자
-
할머니가 용돈주심 27
오늘은 라면에 핫바까지 먹을 수 있겠다
-
생각보다 돈을 많이 쓰는듯
-
인간적으로 다 끝났잖아..
-
경제학과 컴온 3
확통 공부해가야 할 필요있을까요 저 미적밖에 안함 기하는 안 필요하겠죠?
-
Etf같은 지수 추종 왜이리 감질나냐,,, 뇌가 망가져버려,,,
-
시발점 질문.. 2
다른 쌤들 개념강의는 20-30강인데 시발점은 무슨 50,80강… 뉴런도 뉴런나름...
-
재수하면 과탐 오를까요 ? 생지 했었는데 생명 유전 너무 어려워서 힘들었는데...
-
수학 개념 복습 0
개념 다 까먹어서 복습하려는데 한완수 좋아요? 감 다잃어서
-
정시인데 리로스쿨 한달 밀려서 무단결석 두개 끄였는데 이거 출결 고려대 ~중경외시...
-
널 못 잊을 나보다 사랑했던 만큼 아파할 너이기에
-
2024수능 2025 수능 서성한 공대 못 뚫으면 그냥 시도 자체도 안함뇨
-
보통 고2, 고3 땐 선택과목 따라서 수업을 듣잖아여 그러면 각 반의 성비가 다르게...
-
수학 인강들을려고 하는데요… 이미지 현우진 고민중입니다 나중에 +a로 4공법도...
-
올수 국어 수학 33떳는데 2월까진 국어수학 베이스 잡는데 집중하고 3월에...
-
행복했다...
-
2014-15년쯤에 3700명 의전원 포함해서 뽑는데 지금 3000명 애초에 못해도...
-
과민성대장증후군 관련 설문조사 (GS25 1만원권 기프티콘 지급) 2
안녕하세요. 저희는 과민성대장증후군 관련 제품을 개발 중인 연세대와 고려대 학생으로...
-
성논 공학 2
성대 논술 공학계열 여러분들 얼마나 쓰셧나요
-
토정비결에 대하여.. 역사 알아봤습니다^^. 적고나니 비문학 지문 같네요!...
-
순위도 좋고 그냥 경기권 대학 중 아는 대학 막 던져주고 가주세요..
-
D-7 8
-
새벽에 올린글에 댓글도 많이달아주시고 쪽지도 많이보내주셔서 감사합니다ㅎㅎ 20살에...
-
언미생지 입니다
-
사탐런 과목 찾는데 전적대 경제라 경제하려고 했는데 다들 뜯어말리네...
-
개 피곤하다 1
-
제 사촌동생이 이번 수능에서 55455 받아왔습니다. 근데 제가 이 라인을 잘...
-
4번 문제가 마냥 쉬웠다는 것은 아니지만 이번 동사에서 1등급을 가르는 문제는...
-
애들이 막 트리에 한마디씩 달아주라는 링크 올리네
-
99는 죽어도 안되나..
-
동국(경영) Vs 숙명(경제)Vs 인하(아태) 어디가 좋을까요? 10
동국 경영 숙명 경제 인하 아태물류 중에 어디로 결정하는 것이 좋을까요?
-
딱히 특별한건 없고… 2024 6월 백분위 100/ 9월 98 / 수능 99...
-
반수 결심하면 1
대학생활 제대로 못즐기겠죠??? 남들처럼 놀고 연애하고 이런거 시작도 못하나요?
-
와 저 졸림 0
저 대신 숙면 취해주실분