[칼럼] 올해 평가원이 만지작거리고 있을 패
올해 평가원이 만지작거리고 있을 패 - 김지헌T.pdf
김지헌 수학 핏 모의고사 (지헌모) 2025 판매중입니다!!
아래에 칼럼 세 줄 요약 있습니다!
안녕하세요. 올해 오르비북스에서 수학 실전모의고사를 출판하게 된 김지헌입니다.
이번 칼럼 주제는 ‘올해 평가원이 만지작거리고 있을 패’입니다.
사실 이 주제는 제가 3회분의 문제를 출제하면서 가장 많이 고민했던 주제입니다.
평가원이 올해 어떠한 소재를 어떻게 문제에 녹여내어 학생들을 변별하려 할까,
그리고 그러한 경우의 수 중 학생들이 취약한 부분을 대비시키기 위해 난 어떤 문제를 낼 수 있을까.
이번에 문제를 출제하며 나름의 해답을 찾아 이번 칼럼에서 간략하게 소개하려 합니다.
본 칼럼 이외에 추가로 공부해보고 싶은 분들은 배포한 자료를 꼼꼼히 읽어보구, 질문 사항은 댓글로 남겨주세요!
우선 작년 수능에서 가장 난이도가 높았던 22번 문제를 소개하며 칼럼을 시작해보겠습니다.
여러분에게 배포한 자료 1페이지에 22번의 문제가 있으며, 2에서 3페이지에 해설이 있습니다.
해설을 읽고 오신 분, 혹은 충분히 이 문제를 해석해보신 분들이 아래 내용을 읽길 바랍니다.
우선, 박스안의 조건에서 ‘않는다.’를 해석하기 위해 명제의 대우가 참임을 사용하였습니다.
또한, 홀수와 짝수에서 적어도 한 실근을 가짐을 확인하기 위해 귀류법을 사용하였습니다.
이때의 홀수와 짝수가 연속된 정수임을 확인하기 위해 귀류법을 한번 더 사용하였습니다.
나머지 한 실근이 어느 한 실근과의 차이가 1 이하임을 확인하기 위해서도 귀류법을 사용하였습니다.
마지막으로 세 실근 중 중앙값이 0 임을 확인하기 위해서도 귀류법을 사용하였습니다.
이렇듯 이 문제는 어떤 명제가 참임을 보이는 과정에서 고1에 사용되었던 대우증명법과 귀류법을
상당부분 많이 활용한 문제입니다.
수능의 간접 출제 범위인 고1 내용이 이렇듯 많이 나온 것은 우연한 결과가 아닙니다.
평가원은 수능 뿐만 아니라 매년 고2를 대상으로 국가수준 학업성취도평가를 하며,
이때 수능은 9등급제로 학생들의 성적을 나누지만, 학업성취도평가는 4수준제로 학생들의 성적을 나눕니다.
(이때 4수준이 1수준에 비해 개념을 잘 이해한 학생들입니다.)
2020학년도 국가수준 학업성취도 평가의 3번 문항을 봅시다.
이는 배포한 자료 4페이지에 있습니다.
명제 p가 참이므로 모든 학생이 비긴 판이 있습니다.
이때 세 번째 판은 C가 참가하지 않았고, 두 번째 판에서는 승패가 결정났으므로
모든 학생이 비긴 판은 첫 번째 판입니다.
한편 명제 q 또한 참이므로, 어떤 학생은 가위, 바위, 보를 모두 사용하였습니다.
이때 C는 세 번째 판에 참가하지 않았으며, A는 첫 번째판과 두 번째 판에서 주먹을 사용하였으므로
명제 q가 참이 되도록 하는 학생은 B입니다.
따라서 (가)와 (나)는 모두 보에 해당함을 알 수 있습니다.
이 문항을 평가원에서는 변별력이 떨어진다 분석하였습니다.
수능으로 따졌을 때 대략 3등급부터 7등급까지 정답률에서 큰 차이가 없을 문제라는 의미입니다.
반대로 말해 평가원은 명제를 활용한 문제는 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있습니다.
명제와 관련된 개념은 여러분에게 베포한 자료의 5페이지부터 10페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
한편, 2020학년도 국가수준 학업성취도 평가의 5번 문항에서도 이러한 사례를 관찰할 수 있습니다.
(가)는 함수가 아니며, (나)는 상수함수이고, (다)는 일대일함수이므로 정답은 4번임을 확인할 수 있습니다.
한편 이 문제는 오답인 5번 선지를 고른 학생의 비율이 상당히 높은 문제였습니다.
수능으로 따졌을 때 3등급부터 9등급까지 많은 학생들이 동일한 오답을 고른 문제였습니다.
이는 평가원이 함수의 정의를 활용한 문제 또한 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있음을 의미합니다.
함수와 관련된 개념은 여러분에게 배포한 자료의 12페이지부터 16페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
마지막으로 명제의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제와
함수의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제,
이렇게 두 자작문제를 첨부하였습니다.
두 문제 모두 메인에 갔던 자작 문제이니, 퀄리티는 괜찮을거에요!
(https://orbi.kr/00068554202 / https://orbi.kr/00043683841)
풀어보고 궁금한 점이 있다면 댓글 남겨주세요.
세 줄 요약 )
1. 평가원은 국가수준 학업성취도 평가를 통해
학생들이 명제 또는 함수의 정의를 활용한 문제를 낼 때 조금만 난이도를 높여도 학생들이 잘 변별됨을 알고 있다.
2. 작년 수능 22번 문제가 '명제' 파트에서 어렵게 냈으니 올해는 '함수의 정의'를 낼 수 도 있다.
3. 배포한 자료에서 '명제' 파트와 '함수의 정의' 파트 자작 예시 문제 올려뒀습니다!
여러분이 수능의 신유형을 대비할 때 도움이 되길 바라며 이만 칼럼을 마무리하겠습니다.
좋아요 하나 부탁드려요! 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
1컷이 많이 높네ㅜㅜㅜㅜㅜㅜ
-
재수 망하고 이과였데 외대 어문옴 학교에 적응 못함 학교도 마음에 안들고...
-
다른 과탐은 답이 없어. 유일한 길은 고정 50이 쉬운 물리1 뿐이야
-
국수탐 평균 백분위 99+ 영어 1등급이 상위 1%라는데 이정도면 실제론 누백...
-
심지어 잘만듦 눈사람 전시회 온줄
-
생명 에효 2
생명 41 2컷은 정녕 물건너간 것인가... 역시 평가원은 엄격하셔
-
화작 98인데 3
백분위 98은뜸?.....
-
이게 컷 46은 와..ㅋㅋ 물2는 1컷 50도 가능성 생각했어서 전혀 충격 없음 오히려 꿀과목인듯
-
과거 일이기에 기억이 왜곡됐을 수는 있음 23 수능 화작 얘상 1컷 93 실제 1컷...
-
언매 97 3
백분위 99는 나오겠죠?
-
문제 ㄹㅇ 극악으로 내야 변별 가능할 듯
-
물1지1 같이 가자
-
내 대학이 제일 비상이다 화작 98인데 백분위 97 뜨진 않겠죠?
-
사탐으로 공대갈수있는건 ok 수학은 미적을 계속 해야되나요 아니면 확통 해도...
-
수학 4-5등급 빳붕인데 일년쉬었음 수학 신발끈 + 이미지 풀커리 vs 노배...
-
제발요
-
유치원때부터 영어유치원 경쟁 초등학교때부터 학원 레벨테스트, 특목고 입시로 경쟁...
-
텔그 7.7 진학사 9.5 / 11 이거 셋중에 뭐 사죠? + 고속 성장기...
-
언매 92 2
저말대로면 언매-2 92는 1이 안되는건가요?
-
그럼뇨
-
시대 김현우t 0
미적 노베인데 힘들까요? 기출은 풀고 들어가고 싶은데.. 2~3월 쯤에 들어가면 미적 못 듣겠져?
-
무현 실제하더라
-
생야생 vs 약간의 경제요소가 있는 서버 뭐가 더 나음?? 경제서버로 가면 서버팩...
-
수능 성적표 0
여기서 아무리얶까당해도 백분위 5이상 떨어지진않겠죠??? 정시로 인가경라인노리는데...
-
순삽땜에힘듦
-
ㅈㄱㄴ
-
힘들것같은데
-
지금 너무 떨림
-
화작 선택자면 다 됩니다 인력이 부족해서..ㅠ
-
이제 들어보는데 다른분들은 어떠셨나요???
-
개씨발
-
ㄹㅇ??? 아 안되는데
-
작수의 충격으로 다들 칼갈고 나온듯.. 이 시험지가 작년 이전에 나왔다면 언매1컷...
-
ㅇㅇ
-
물1: 물2로 가야지...어? ㅅㅂ 화1: 닥치고 화2런 생1: 여기나...
-
화작98 언매94 미적 92 확통100 뜨나요 이러면 진짜 재입학 후 수시해야겠네ㅋㅋㅋㅋ
-
다들 점심 드셨나요? 19
저는샌드위치먹었답니다
-
6일만 버티자구요
-
2월까지 개념인강 돌리기는 시간아깝고 문제 계속 접해보고 부족한 개념 보이면...
-
죽고싶네진짜
-
확통 2컷 4
작년처럼 85일 확률은 낮겠죠? 2컷 88이면 62/23인 85 백분위는 87정도는 가능할까요 ㅠㅠ
-
점심 ㅇㅈ) (2) 14
정말 맛있어 헤헤
-
23수능 화작미적 화작1컷 96 24수능 언매확통 확통1컷 94 25수능 화작확통...
-
3컷은?.......
-
시대, 메기 같은 회사들은 컷을 최대한 희망회로로 잡는게 연례행사고 실제컷보다 높게...
-
만점자수랑 커뮤에 올라오는 글들 보니까 그냥 평범한거같음ㅠ
-
https://orbi.kr/00070067428#c_70067642 보수적으로 잡는 게 좋다니깐
-
지1은 조졌다 0
미적 69 3기원을 시작한다.... 38이면 3은 나오겠지
좋은 글 감사합니다! 고1수학 극혐이긴 하지만 참고 공부해봐야겠네요..
혹시 핏 모의고사에도 저런 류의 문제가 실려 있을까요?
함수의 정의를 활용한 예시 문제의 경우, 모의고사에 집어넣기에는 실험적인 문제라 판단했습니다.
하지만 명제를 활용한 예시 문제의 경우, 본 모의고사의 쿠키 문제로 해설지 제일 끝에 첨부되어있습니다.
본 모의고사의 15번, 22번 문항대는 명제를 활용한 예시 문제와 같이 비교적 덜 실험적인 문항들이 많습니다. 학생들이 배워갈 점이 있지만, 동시에 실전성도 대비시키고 싶었기 때문입니다.
자세한 답변 감사합니다! 모의고사 꼭 구매하도록 하겠습니다
감사합니다 ㅎㅎ