미분법 복기 (증명 포함!)
1. 합성함수의 미분법
y=f(u), u=g(x)가 미분가능할 때,
y=f(u), u=g(x)이면 --> dy/dx = dy/du × du/dx
[증명]
(x의 증분 Δx에 대하여 u=g(x)의 증분 Δu, y=f(g(x))의 증분 Δy) Δu = g(x+ Δx)-g(x), 즉 g(x+ Δx) =u + Δu이므로
Δy = f(g(x+ Δx)) - f(g(x)) = f(u+ Δu) -f(u)
따라서 Δy/Δx = Δy/Δu × Δu/Δx
= {f(u+ Δu)-f(u) / Δu} × {g(x+ Δx)-g(x) / Δx}
Δx->0으로 갈때 lim Δy/Δx = f'(u)g'(x)
(* Δx->0 일때 Δu->0 )
y=f(g(x)) --> y' = f'(g(x)) × g'(x)
_______________________________________________________
2. 음함수와 역함수의 미분법
2-1. 음함수의 미분법
음함수 F(x , y)=0에서 y를 x의 함수로 생각하고, 각 항을 x에 관해 미분 (* y=~ 꼴로 정리하지 않고도 가능..!)
2-2. 역함수의 미분법
(함수f의 역함수g, f와 g가 미분가능)
y=f(x)는 곧, x=g(y) --> 양변을 x에 관해 미분하면,
1 = dg(y)/dy × dy/dx
= dx/dy × dy/dx
따라서, dx/dy = 1 / dy/dx (*dy/dx가 0이 되면 안됨!)
g'(y) = 1/ f'(x)
& b=f(a) 일 때 g'(b)=1/f'(a)
_______________________________________________________
3. 매개변수로 나타낸 함수의 미분법
x=f(t), y=g(t)가 t에 관하여 미분가능,
dy/dx = dy/dt × dt/dx = dy/dt × (1 / dx/dt)
= g'(t)× {1/f'(t)}
(*f'(t)가 0이되면 안됨!)
_______________________________________________________
+
공부가 잘 안되서 복습을 하자...! 했는데
뭔가 옯에 글을 써보면서 복습해보니까 은근 괜찮네요..
수능 3일 전이기도 하고, 많이 부족하지만 도움이 될 수 있는 글을 좀 써보고 싶어서...
3-40분정도 투자해서 미분법 복기(증명포함) 해봣습니당~!
혹시라도 개념 흔들리거나 헷갈리시는
미적 선택자분들 참고하셔용~~
다들 수능 잘봅시다!! 파이팅!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진작 벗을 걸 7
더워 죽는 줄 알았네
-
여친 왈 수학 쉬운 듯 하나 아이디어가 너무 수능틱 하게 나와 쉽게 느껴졌으나 계산...
-
고민이 되오 딱 한사람것만 듣고 수능볼건데
-
파티에 사람들이 있다. 이 사람들중에 임의의 2명은 악수를 하거나 하지 않았다....
-
님들 다 죽음 ㄷㄷ
-
예비 고3이고 결방학에 올오카 오리진 독서 문학 들을건데 병행 할 교재 필요할까요?...
-
ㅇㅈ 3
-
자전 가서 건축 갈까 하는데… 어디가 좋아보이나요?
-
ㄹㅇ임
-
기말고사 D-8인데 머릿속에 아무것도 안 들어온다 살려줘
-
고1수학 1
수 상 하 다시해야되는 기준 같은거 알려주실수 잇나요
-
의생명시스템이랑 생명과학과중에 뭐가 더 나음? 입결은 전자가 좀 더 높긴함
-
츄름 4
츄릅
-
30대 참전 1
12월이다 이제 공부 드가자
-
이런 아싸는 우째야댐 26
술도 못 먹고 운동도 못하고 말라서 비실비실함 말도 못 걸겠고 누가 말 걸면 미칠...
-
진짜 방법을 모르겠음 ㅇㅇ..
-
술 잘마시고 싶어요 10
술 분위기 맨날 못 즐김요.. 만약 잘 마셨으면 내년 새터도 가서 후배들거도...
-
수능끝나면~~도 하고 알바도 하고… 였지만 친구들 만나서 노는것도 하루이틀....
-
오오오 오오오오오~~~
-
얼른 쿠팡씨발련들아 좇빠지게번돈 우진이햄 책몇권에 전부 꼴아야하니까.
-
나중에 일본 여행 갈 때 굿즈나 사야지.. 아 진짜 마지막 엔딩에서 오열했다
-
경한 목표인데 화작 미적 사탐 사탐 조합이면 원점수&백분위 몇정도 되어야 하나요?...
-
솔직히 진짜 전업으로 간절하게 때려박은거면 피폐해지는게 거의 당연하지 않나 싶어서.. (4수 이상)
-
어떤 파티의 사람들이 있고, 이 사람들은 서로 악수를 하거나 하지 않았다. (했으면...
-
인생 망했음뇨
-
앞으로도 감사하겠습니다
-
표지 디자인 왜 바꾼거지... 원래 동물 표지가 훨씬 간지났는데
-
1컷 94이면 실질적으론 96이고 표점도 개망하고 다맞아도 백분위 100이 안뜨네
-
키 커지고 싶다 0
밤 늦게 폰하고 애니보고 만화책읽고 그래서 그런거겠지 ㅜㅜ
-
유성스프 시발 ㅋㅋㅋㅋ
-
어라?!
-
Responsibility
-
본만님이신가요..?
-
지구1 1컷에 관해.. 17
안녕하세요! 아직도 성적 발표까지 5일 정도 남은 이 시기에, 놀고 들어와 집에서...
-
언제더라 작년인가
-
그냥 머랄까 나보다 못난 사람들(ㅈㅅ)이 잘 살아가는 거를 보면 힘이 됨 우리 나라...
-
1.9시 이후에 드는 부정적인 생각을 믿지 말 것 15
2. 1을 준수할 것
-
오늘은 쉬었고.. 내일부터 건실히.. 난 음쓰야.........
-
자기실다 7
안자
-
뭐 한 몇 년간 3
세숫대야에 고여있는 물 마냥그냥 완전히 썩어가지고 이거는 뭐 감각이 없어비가 내리면...
-
에휴 1
-
사탐아 고맙다 1
네덕에살았다시발
-
올해 매월승리에 이감 강k 머냐..
-
수1이 대수이고 수2가 미적으로 나오는건가?
-
저는 이과 학종을 쓸 예정인데, 저희 학교가 3학년때 언매/화작/미적/확통/영어...
-
그렇다고 생각해오(비싼 거만 빼면)
복습완료! ㅋㅋㅋㅋ