쉽고 재밋고 개 유명한 문제 (2)
파티에 사람들이 있다.
이 사람들중에 임의의 2명은 악수를 하거나 하지 않았다. (여러번도 알빠 없음)
이때 각 사람마다의 악수 횟수를 모두 더한 값은 짝수임을 보여라.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
씨발
-
학원 다니면서 준비하려고 하는데요, 원래 1월부터 들을라했다가 그냥 1,2월 빡세게...
-
들어보셈 ㄹㅇ
-
오피셜 ㅅㅅ 0
기대가 많이 됩니다 우제쌤
-
14:15 B조 풀리그 T1 VS 베트남 올스타 16:45 B조 풀리그 T1 VS...
-
나름 금의환향했다... 뱃지 확인!
-
궁금함.... 진짜면 문제있어보이는 분들 계심,,,,,,,
-
요즘 좀 어려워진듯
-
할줄아는게이것밖에없어서 이것만하고있긴하는데
-
안해도 되는거죠?
-
동생이.. 8
훈련소 일찍들어갔으면 케리아 만날 수 있지 않았을까하고 일찍들가서 지 소개시켜주면...
-
싫어하시넹
-
여자를 좋아하는 걸까 남자를 좋아하는 걸까
-
얼리버드 기상 2
-
노래들으면서게임하고싶음뇨
-
애니프사 탈출 5
농담곰단 합류 완료
-
옆동네는 무섭네 10
군기 빡세게 잡는구나 우리가 아니어서 다행
-
내가 좀 여자를 밝히긴함
-
뭐야 내 눈 돌려줘요
-
게이짓하면 속으로 심쿵하고 설레서 좋아함뇨
-
탐구도 싹다 노베라치고 2026학년도 수능만 생각한다 할때 탐구는 사탐고르는게...
-
이미 재수 서바이벌에서 이상민 성적상승보고 악플 존나 달림
-
14111 41111 이런 저주받은 머리 키워주면 재밌겠다
-
같이 피방 가자
-
피시방이나가야지 2
렛츠기릿
-
얼마나 개념이 제대로 머릿속에 잘 빼다박은 친구인지 알아보는 것 또한 능력이거든....
-
12월이네 0
세상에나
-
집에서 롤만할거같은디..
-
그냥 인강 듣고 메이져 컨텐츠로 공부하는게 솔직히 더 .. 막말로 세상 학원이 거의...
-
환불도 몇개들어버려서안대고.. 양도어케하져..ㅠㅠ
-
오르비식 노베 모집해서 헬스터디 상위호환 느낌으로
-
내 글 위로도 글 있는데 내 글만 사라졌다 생겼다 함뇨
-
요즘 여장남자 근황 22
유튜버 한주
-
저녁은 양고기 4
칭따오맥주와 함께
-
??
-
점수만 넘기면서 보고 끄면 개추 ㅋㅋㅋㅋㅋ
-
냥~!
-
다 처음 2
태어나서 논술도 처음 정시도 처음 다 되게 재밌는 길이라는걸 20살 되고 알아버렸다..
-
개버죽다
-
나도 헬스터디 3
쌤들이랑 실모배틀찍을거임뇨… 헬스터디수능만점ㄱㄱ혓
-
헬스터디 사실 3
유튜브로 안보고 오르비로 반응만 보고 아는척중,,,,,,
-
나도헬스터디나가고싶은데 11
사탐완전노베가1년만에5050 한번보여줄자신있는데
-
제곧내
-
로고는 저의 순수창작물이며, AI를 사용하지 않았습니다. (갤럭시노트에서 아이디어...
-
성적대박적상승 헬스터디 아름다운 마무리 근데 한건희 포지션 한 명은 더 있어야 재밌을듯
-
너건따 브레인포그
-
조회수잘나오시잖아
-
아이민 백만번대면 이제 틀니임?
-
시즌 3을 과연 하려나 모르겠네
보여줄게 완전히 달라진 나
악수할때마다 총 카운트가 2씩 올라가니깐 무저건 짝수 아님뇨?
맞음뇨 ㅋㅋ
에잇 재미없엇네 ㅋㅋ
이런 ㅅㅂㅋㅋㅋ
파티에 있는 사람들의 수를 n이라고 하고, 각 사람을 p1, p2, ..., pn이라고 부르겠습니다. 각 사람 pi의 악수 횟수를 di라고 하겠습니다. 이때 우리가 증명해야 할 것은 d1 + d2 + ... + dn이 짝수라는 것입니다.
악수는 두 사람 사이에서 이루어지므로, 모든 악수는 두 사람의 악수 횟수에 각각 1씩 더해집니다. 즉, 악수가 한 번 일어날 때마다 악수 횟수의 총합은 2가 증가합니다.
예를 들어, p1과 p2가 악수를 했다면 d1과 d2가 각각 1씩 증가하므로 d1 + d2 + ... + dn은 2가 증가합니다. p1과 p3가 악수를 했다면 d1과 d3가 각각 1씩 증가하므로 d1 + d2 + ... + dn은 2가 증가합니다.
이런 식으로 모든 악수에 대해 악수 횟수의 총합은 2씩 증가하므로, 악수 횟수의 총합은 항상 짝수가 됩니다.
따라서 각 사람마다의 악수 횟수를 모두 더한 값은 짝수입니다.
좀 더 수학적으로 표현하면, 악수 횟수의 총합은 다음과 같이 나타낼 수 있습니다.
Σ di (i=1부터 n까지)
각 악수는 두 사람의 악수 횟수를 1씩 증가시키므로, 모든 악수에 대해 이 합은 2의 배수가 됩니다. 따라서 악수 횟수의 총합은 짝수입니다.
뭣
di라니 그래프이론을 아시는 분이신감 ㅎㅎ
53초전이면 합리적 의심으로 gpt
땡
그런거구나
사실 구글 ai인 Gemini한테 시켰어요 ㅋㅋ
ㄷㄷ
쌤쌤이로 할거임뇨
한 번의 악수는 악수 횟수의 총합에서 2명당 1번씩 카운트되어 2번으로 치환되기 때문에 악수가 몇 번 이루어지더라도 짝수일 수밖에 없음
확통교과서에 나오지않나
근가