함수추론 자작문제
계산은 많지 않지만 생각을 많이 해봐야 하는 문제 같습니다 개형만 찾으면 답은 바로 쓸 수 있으니 편하게 풀어보시면 좋을 것 같습니다 의도한 난이도는 22번 정도
(+)오류 있습니다..ㅠ 아래 조건을 추가해서 풀어주세요 죄송합니다
(나) (단, 두 실수 t1, t2는 -2도 아니고 2도 아니다.)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
다들 좋은 하루 보내세요
-
연치 vs 이의 3
말 그대로 연세대 치대 vs 이화여대 의대 둘 다 안정이고 90% 붙을 것 같은데...
-
오르비 한적하네 0
다들 새르비하고 주무시고 계시나
-
김재홍 언매 특강 들으시는 분 있나요 2주차 결석했는데 영상 기한이 지나서 필기가...
-
???
-
여캐일러 투척 0
음 역시 귀엽군
-
아직 수시도 안끝났는데 너무 멀리 생각하는 걸까요 이번년도가 거의 마지막 기회라 부담이 심하네요;
-
인터넷 보니 하루에 1회씩 시간 재서 풀고 분석하는걸 추천하시던데 1회를 2일정도에...
-
벌써 7시반이군 1
얼버기할시간
-
사람은 안바뀐다 노력도 재능이다 이런 말을 너무 많이 들었는데 현역때나 재수때나...
-
비록 하는 일에 비해 얻는 돈은 보잘것없지만 멏년간 방구석에 앉아서 공부만 해와서...
-
빠른07인데 06이랑 친구먹으려하면 아니꼽개보나요?
-
일주일째 유입 0명임요 소수과라서 ㄹㅇ 불안한데 원서 마감 직전에 봤을때는...
-
진짜 궁금한게 8
수학 잘하시는분들은 글씨가 개판이던데(귀납척 추론에 의한 일반화) 왜 그런건가요?...
-
제정신인가 ㄹㅇ 무슨 경찰을 폭행하고 유리창을 깨고 어휴…난 주변에 저런 노인들 없겠지?
-
지금 일어난게 아니라 아직 안잤어요...
-
아직 영어 기본이 잘 안잡혀서 그러는데 우연히 키스타트 책을 얻었는데 구문편+단어...
-
프사 바꿈 7
주먹.
-
3합기원 0
ㅈㄱㄴ
-
내신 bb라는 가정하에 설대식 몇점정도가 최초합권 일까여? 서울대 기계 설대식 점수 수능
-
증명이란 특정한 공리들을 가정하고, 그 가정하에서 어떤 명제가 참이라는 것을...
-
안녕하세요 저는 오래전에 수능을 쳤던 연세대 경영학과 졸업생입니다 (제가 요즘...
-
현역 언미화1생1 94 80 50 42 수학 강대k랑 서바는 백분위 96~99 정도...
-
아 너무 힘드네
-
윤 대통령 지지자들 난동…법원 유리창 깨고 난입·경찰 폭행 11
윤석열 대통령에 대한 구속영장이 발부된 뒤, 윤 대통령 지지자들이 법원 유리창을...
-
기차지나간당 6
부지런행
-
그렇게 어벤져스가 탄생했다. 한놈은 싸가지 없는 새기 한놈은 말많은 새기 한놈은...
-
오루비 잘 자 2
-
오르비 죽었다 !! 25
-
나 대학 신입생 풋풋한 시절 과친구도 없고 혼자 6개월동안 수업듣고 수업끝나면...
-
알바회식 끝 0
일은 두시애 끝났는데 술을 3시간 동안 마시네 피곤해...
-
글리젠이 멈쳤네 2
이거 조금 숨막히는데… 슬슬 자야할 시간인가 보네.. 오르비 좋은꿈꾸세요
-
닭때 보수 불태운다그럴때 태웠어야하는데 ㅅㅂ
-
ㅁㅁ세계 멸공의 마녀가 되었습니다 경제사범 영애님은 은팔찌 차기 싫어요! 괴담 호텔...
-
소문이 어마무시하던데 진짜 (과장좀 보태서)아동학대 수준인가요…? 숙제/공부량이...
-
경희대 신설 자유전공(국제)이고 54명 모집입니다. 진학사랑 텔그 마감 직전...
-
100원을 10원이라고 부르면 됨
-
아카데미 악당영애 교정하기 진짜 개재밌네
-
쓰담쓰담 2
뭐랄까, 지나다니는 사람마다 사랑하다고 말하고 싶은 기분이네… 사랑해 사랑해의...
-
옥냥이 유투브 보면 됨 하루 넘는 영상도 올라옴ㅌㅋㅋㅌㅋㅌㅋㅌㅋㅌㅋㅌ 막 30...
-
풀영상이나 스트리밍 영상으로는 절대 안봄 뇌가 숏츠에 익숙해져서 숏츠만 봄
-
7등인데 계산기 상으로는 9등으로 뜨는데 이거 맞나요?
-
다들 자 인제 10
-
김윤 저새끼는 진짜 간첩같다
-
미묘한 하찮음 진짜 제 취향이에요
-
유튜브 구독창 24
그외 이렐킹 저라뎃 코뚱잉 클리드 등등... 롤창의 구독 목록
-
진동하지 않을 수가 없잖아.
-
이 아스발.. 0
그래 이번시즌 포기하고 다치지 말고 챔스만 가자 내년에 형 수능치고 대학붙고 올게...
-
서울대 8명 모집하는 과 점공 8등입니다. 16등 분이 1차합 하셨고 인증도...
-
의대 늘리고 싶어서 늘리는거고 전공의도 하기 싫다 해서 나가는거고 의대생도 휴학하고...
개어렵네 ㄷㄷ
안어려워용..
옹 이건 풀어봐야지 잠만녀
제발 풀이좀 알려주세요ㅜㅜ
오류가 있어서 죄송합니다..ㅠ 확인하시고 다시 풀어보실래요?
크악..ㅜㅜ
현역이신가요?
올해 수능 쳤습니다!
오,,,그렇군요
수학 양식 같은 거 완벽하게 숙지하신 게 신기하네요
문항 제작 많이 연습해 두세요! 조만간 제안 하나를 드릴 수도 있을 것 같아요
오우 말씀만으로도 감사합니다 :) 언제든 맡겨주십쇼!
아 문제 잘못봤네요 죄송합니다!
이거 정답개형이 뭐죠...?
234 맞나요?
아니네요 흠
오류 수정한 것에 따르면 맞습니다! 제가 의도한 답은 이거에요..ㅠ
아 -2가 비어서 다시 푸는데 그걸 빼야 했군요
아닙니다.. 시간 낭비하게 해서 너무 죄송합니다ㅠ 부족한 문제 풀어주셔서 감사합니다!
1. g(x) 좌우극한 다르려면 그지점에서 f(x)와 x의 대소 바뀌어야함 and f(x)와 x의 대소가 바뀌면 x가 0이 아닐때 g(x) 좌우극한 다름 -> 'x가 0이 아닐때 g(x) 극한 not 존재'와 '0이 아닌 x에서 f(x)의 대소변화'는 서로 필요충분조건, 따라서 x=0을 제외한 f(x)에서 x=4에서만 대소변화
2. f(x)-x는 사차함수이므로 부호변화가 짝수개 있어야함 -> x=0에서도 f(x)와 x 대소변화 (x=0과 x=4에서만 f(x)와 x의 대소변화)
3. f(x)의 최고차항 계수가 양수일 때: 0 f(2)<0
4. h(inf)=2이므로 h(x)<3
5. f(2)<0이고 f(4)=4이므로 20 인 x 존재 and 같은 논리로 f(0)=0이므로 0 0(+) 지점 존재 = f(x) 극소 존재
6. 이 극솟값이 양수면 같은 논리로 다른 극솟값 또 존재 -> 극소의 개수는 유한하므로 음의 극솟값 존재
7. g(x)=-f(x) (0 이 양의 극댓값을 c라고 하면, g(-inf)=inf고 g(0)=0이므로 g(x)=c인 x<0 존재, 따라서 lim x->c- h(x) >=3 -> 모순 -> 따라서 f(x)의 최고차항 계수는 음수
8. f(x)의 최고차항 계수가 음수: 0x>0이고 반대로 x<0, x>4에서 g(x)=-f(x)
9. g(0)=0이고 g(4)=4이므로 04에서 f(x)=0인 x 존재 -> 이 x를 a라고 하면 g(a)=0이고 g(inf)=inf이므로 x>a에서 g(x)=c인 x 존재
11. 따라서 g(x)=c의 실근은 최소 3개이므로 h(c)>=3 -> 모순
12. f(x)의 최고차항 계수를 양수라고 가정해도 모순, 음수라고 가정해도 모순
아 기껏 타이핑했는데 텍스트 깨졌네...
맞나요!!
맞습니다! 저 문제 자체는 모순입니다.. 오류 수정했는데 다시 한번 풀어봐주실래요 죄송합니다..
제발정답좀요 ㅠㅠ 못자겠어요
오류 확인하셨나요?
넵..
그래프 개형입니다!
아 저렇게 g(2)만 톡 튀어나와 있으면 되는구나..ㅠㅠ 위로 볼록이 생기면 안되는데 g(2)>0이려면 f(2)<0이고 그럼 위로 볼록이 무조건 생기는데??? 로 계속 헤맸어요 수능 공부할때도 이런거에 취약했던... 그래서 뭔가 y=x에 한번 접하지않을까 생각했는데 저걸 안해봤네요
저런 디테일 찾는 게 쉽지는 않죠 ㅠ 풀어주셔서 감사합니다!
ㅋㅋㅋㅋㅋㅋ제가 죄송합니다ㅜㅜ
중근갖는걸 생각못해서 한참 해맸네요
닫힌부등호인지 열린부등호인지 잘봐야하는데 감다떨어졋네
조건 자체에 모순이 있기도 했으니.. 더 힘드셨을 것 같습니다 모순 찾으신거 다 적어주시고 정말 감사합니다!
f(x) = 1/16 x(x-2)²(x-4)+x
f(-6) = 234