미적 질문 (간단하게 정리했음)
g(x)가 아무런 조건도 없는 상황인데
2x+npi 꼴이라 할 수 있나요?
g(0) = npi 가 아닌 상황이면
꼭 g'(0) =2 일 필요는 없는 거 아닌가요??
미적 너무 오랜만이라 헷갈리네요 ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅋㅋㅋㅋㅋㅋ심지어지인과외라더빡세네
-
사탐런 하면 안되는이유 11
형광펜 17가지 색깔써가며 필기이쁘게하고 국어 수학 거르고 하루종일 사탐만하는...
-
물 정량보다 50미리 많게 새우젓 한 티스푼 다진마늘 두 티스푼 넣고 끓이면 요리가...
-
어텀킴!어텀킴!어텀킴! 20
차마 다른 사진은 못보여주겠음ㅁㅁ
-
사방 막혀있는 1인용 독서실인데 붙어있는 구조임 근데 대각선 위치에 있는데서 평소...
-
대형학원 알바라서 학생들 모의고사 데이터 정리하는데 55311 46311 이런...
-
흠
-
투과목이 필수로 껴있어야하는건 아니고 투과목을 선택해서 고득점을 받으면 다른과목에...
-
[칼럼] 사문 9모 4등급 -> 수능 백분위 98의 방법론 소개 35
안녕하세요. 최근 선택자가 가장 급증하는 탐구 과목을 꼽자면 아마도 사문이 아닐까...
-
공부 시발 점 18
어그로 죄송합니다 현여기들은 물론 고1,2나 반수, 직장인분들 등 누구나...
-
풀이과정 지참해서 맞았을 경우 100덕(쉬우니까)
-
좆같은 짝수해
-
자리 다찼다거나 하면서 돌려보냄??
-
포켓몬메타 탑승 5
https://pk-diagram.pages.dev/ 난 핫삼이랑 삼삼이 제일 좋다
-
그건 . . ㅋㅋ ㅋㅋㅋㅋㅋ ㅋ ㅋㅋㅋㅋㅋㅋㅋ ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ '개약해지니깐'...
-
비주얼 원탑 비킬러 13
230909 9번치곤 되게 무서운 비주얼인듯 물론 난이도는 딱 9번인 것 같지 않나요
-
낮공 vs 상경 1
취업면에서 어디가 더 낫나요?
-
국어는 착한일 많이하고 전날 기도메타로 간다 영어 한국사는 뭐... 탐구 전 몸풀기 시간 개념이고
-
전글참조
-
작년 고등학교 입학 전에 전주로 내려갔어야 했는데... 말 안듣고 갓반고 갔다...
-
정상화의신 2
하하
-
사탐 추천 1
사문 깔고 정법하려다가 좀 걱정돼서 생윤으로 바꿀까 고민중입니다 탐구 추천 좀...
-
⚡️?고려대학교 전기전자공학부 25학번 아기호랑이를 찾습니다! ?⚡️ 0
⚡️?고려대학교 전기전자공학부 25학번 아기호랑이를 찾습니다! ?⚡️ 민족 고대!...
-
채점 빨리해줄테니까 15달러 내놓으라는 건 ㅋㅋㅋㅋㅋㅋㅋ
-
공대 가면 지방 취업,,,
-
물리2 기출분석이 제대로 되면 1등급 가능한 과목인가요??? 8
컨텐츠가 많지 않아서 기출을 무한반복해야될거같은데 어떤가요???
-
https://pk-diagram.pages.dev/ 이중에서 고르면 난 찌르호크랑 메침붕
-
ㅈㄱㄴ
-
아 레어 뺏겼다 7
으악
-
ㄹㅇㄹㅇ
-
졸린데 수학 마무리하고 잘까여 잠깐 내려갔다와서 공부 못 했는데
-
ㅈㅂㅈㅂㅈㅂㅈㅂ ㅠㅠㅠㅠㅠ 노과금이여
-
표본 있으신 분?
-
뉴분감 1
뉴분감 커리 6월부터 타면 늦을까요 ? 아니면 3월부터 할까요
-
이제 간다 ㅂㅂ 4
ㅈㄱㄴ
-
저녁메뉴
-
이히히히 11
기부니가 좋다
-
하 돈 깨지겠네 15
이래서 콩나물 관리를 잘해야
-
그것이 문제로다.
-
의대 준비해볼까 6
메디컬 갈 생각 ㅈ도 없는 공대생인데 그냥 뭔가 내 지능의 한계가 어디까지인지...
-
약간 9번~13번 모여잇는 애 잇나요 진짜빠르게 쳐내는 연습하고싶은데
-
고 1/2모고랑 수능이랑 차이가 얼마나 있을까요? 11
차이 엄청 크다는데 어느정도인지 모르겠어서 현실적으로 어느정도인지 궁금합니다
-
본인 쇼메이커 좋아하지만 페이커, 쇼메이커는 잘 만들어진 판에서 예쁘고 맛있게 잘...
-
대학커뮤니티 노크에서 선발한 경희대 선배가 오르비에 있는 예비 경희대학생, 경희대...
-
들러요
-
설훌아님
-
재종 수업에서 일부 중요한 문제들 다루고 있긴 한데
-
징짜루
사실 저도 그 생각햇는데
머지 싶음 지금
오...과외 준비하시는건가요?
양변 미분해보세요
아닌가
맞내요 이거
g'(0)=0이면 g(x)가 왜 상수인지 알려주실수잇으신가요
g'(0)=0인데
그 외에는 미분계수가 0이 아니라면요??
아 헷갈리네..
충분조건이지 필요조건은 아닌거같은데,,,
아니네 맞네,,,씹
아니네 아닌데
원본 문제 보여주실 수 있나요?
오른쪽항이 0부터 2X까지라 N파이인거 아닌가요'
g(0)이 N파이가 아니면 g(x)-g(0)=2x라고 해도 좌변 우변이 같다는 보장이 없어요
사인제곱을 0부터 2X까지 적분한거랑 0.5파이부터 2X까지 적분한게 다르자나요
g가 1차함수라는 보장이 없어서
시작점이 달라도 얼마든지 적분 결과는 같게 만들 수 있긴 해요
위끝 아래끝 기준으로 좌변은 미지수, 우변은 상수가 나오게 두면 g가 2x+C 꼴로 나와야 함이 보이고, 우변의 한쪽 끝이 0으로 고정이니까 좌변도 f의 절편이 경계여야 함 즉 +n*pi
인 것 같네요
오류 맞는 것 같네요
함수 h(x)=1/2(x-sinx*cosx)에 대해 h'(x)=sin^2(x)니까
h(g(x))-h(g(0)) = h(2x)-h(0)이 성립하고, 이때 h(x)는 일대일대응이니 역함수가 존재해서 임의의 g(0)에 대해 g(x)=h-1(h(2x)+h(g(0)))과 같이 g(x)를 정의할 수 있어요
물론 g(0)=npi가 아니면 g'(0)=0이고요
사진은 g(0)=pi/2인 케이스에서 g(x)의 그래프에요
생각해보니 원본 문제에서는 g'(x)가 나타나는데, 이런 식으로 정의되면 특정 점에서 약간 x^1/3 그래프랑 비슷한 형식으로 미분계수가 발산하는 문제가 있긴 하네요
그렇다고 미분가능이라 명시된 건 아니라서, 여러모로 애매하긴 해요
검토가 안된 문제같네여...
선생님 답변 정말 감사합니다 ㅠㅠ
뭔가 이상한건 느꼈는데
현우진 쌤 교재라서 해설이 무조건 맞을 줄 알았네요
감사합니다!
잘 읽었습니다.
의문이 드는 것은
제가 애초에 질문한 이유가 g(0)=0이 아닐 경우에도 성립하는지 궁금해서 였는데,
선생님의 증명에서는
f(g(x))=0 이면 f(2x)=0 인것을 이용하셨네요.
물론 맞는 말이긴 하지만,
g’(x)=0이어도 f(2x)=0이 됩니다.
그렇다면 f(g(x))=0과 f(2x)=0은 필요충분조건이 될 수 없지 않나요?
g'(x)f(g(x))=2f(2x)이므로, f(g(x))=0이면 f(2x)=0이지만, f(2x)=0이면, f(g(x))=0일 수도 있고, g'(x)=0일 수도 있기에, 필자는 f(g(x))=0의 해와 f(2x)=0의 해가 일치한다는 걸 증명함. f(g(x))=0→f(2x)=0과 f(2x)=0→f(g(x))=0을 각각 증명해 f(g(x))=0⇔f(2x)=0을 도출한 게 아니라, f(g(x))=0→f(2x)=0와 추가적인 증명을 이용해 f(g(x))=0의 해와 f(2x)=0의 해를 구했고, 두 해가 일치했기에 f(g(x))=0⇔f(2x)=0이 도출된 거임