"Chapter. 0 - 함수의 연속"
“Chapter. 0 – 함수의 연속”
안녕하세요 ‘한국외대 부’입니다. 언제나 여러분 입시에 가장 먼저 앞서있고,
길을 내주는 길잡이가 되어드리도록 최선을 다해 앞장서겠습니다!
오늘의 제목은 “함수의 연속”입니다. 모든 칼럼은 저의 자료의 내용으로 진행됩니다!
수2 내용의 함수 파트는 22번 15번 등으로 킬러로 자주 등장하는 내용입니다.
오늘은 킬러로 자주 등장하는 ‘함수의 연속’에 대해 알아봅시다.
함수의 연속은 함수를 결정하는데 중요한 조건이 됩니다.
수2에선 초월함수가 등장하지 않아 ‘연속’이라는 조건 만으로도 많은 정보를 알 수 있습니다!
특히, 수2에선 다항함수가 자주 출현하기에 연속과 미분 가능성에 대해서 항상 주의깊게 확인해야합니다.
연속임을 확인하는 방법은 정말 단순합니다.
함수의 연속을 확인하는 의심점 찾는 방법을 확인해주세요.
먼저, 의심되는 지점에서 연속이 되는지만 확인하면 됩니다!
그 의심되는 지점을 어떻게 찾는지 알아봅시다.
첫 번째, 경계를 의심하자!
단순히 설명된 연속함수의 경우 닫힌 구간으로 정의된 그 경계가 의심점이 됩니다.
경계로 정의된 함수의 경우 경계 사이는 대부분 연속되는 구간으로 주어지고 그 경계에서 다른 함수로 바뀌거나 새로운 조건이 붙는 경우가 많습니다.
두 번째, 분모가 “0”이되는 지점을 의심하자!
분수로 표현된 유리함수의 경우 분모가 0인 지점을 항상 의심해야 합니다.
그 지점은 존재 자체를 안하기에 분모가 0이되는 좌,우 극한의 값과 같은 값을 지니는
다른 함수의 값으로 표현되어야 연속이 됩니다.
마지막으로, 합성함수의 연속에 대해 알아봅시다!
합성함수는 그 주인공이 무조건! 겉함수입니다.
그림과 함께 보면 합성함수는 두 개의 함수를 합성 시켜놓은 꼴이기에
두 개의 함수의 연속 의심지점을 모두 고려해야 합니다.
따라서 이와같이 속함수에서 겉함수로 넘어가는 부분을 꼼꼼히 체크해야합니다.
어느하나 빠지지 않게 잘 체크하여 그 좌,우극한 값과 함수값이 같은지 확인해야합니다.
합성함수의 연속을 잘 이해했나 확인해보기 위해
2016년 6월 모의고사 문제를 예시로 같이 풀어봅시다.
앞의 합성함수의 연속을 확인 하는 방법을 같이 보면서 해설을 읽어주세요!
속함수의 연속의 조건에서 경계인 x=1에서의 좌,우,함수값을 모두 의심해야하며,
그 값을 정의역으로 하는 g(x)에서의 값이 모두 동일해야하니
g(a)값은 g(1)의 값과 같아야 합니다, 따라서 이를 만족시키는 a의 모든 값의 곱은 1과 –1의곱인 –1입니다.
합성함수를 관찰할 때 중요하게 봐야하는 부분은
속함수의 치역이 겉함수의 정의역이 된다는 점입니다.
이점은 아직 미숙할지 몰라도 여러 예시 문항들을 풀어보면서 꾸준히 연습해야 합니다.
오늘의 내용은 여기까지 입니다!
앞으로 더 많은 내용들로 꾸준히 찾아올테니 좋아요과 구독 한번씩만 눌러주시고 기다려주세요!
자료의 전체버전은
https://cafe.naver.com/suhui/28704323 에서 확인해주세요!
고민이나 공부상담, 원하시는 칼럼의 내용이 있으시면 댓글이나 쪽지로 남겨주세요.
다음 칼럼에 반영하여 작성하겠습니다!
수험생의 길잡이가 되어드리는
'한국외대 부'였습니다 감사합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋아요 0 답글 달기 신고
-
사실 쌍윤 좀 재밋게 공부하긴했음
-
설날뱃지 ㄷㄷ 마려운데 돈이없네 흑흑
-
25학년도 수능 영어 21번 문항 기출분석 | 상세한 해설과 풀이 0
건축과 그림자를 쫓는 사람들 1. 핵심요약 이 글은 로마 제국 시절 건축가의 사회적...
-
https://orbi.kr/00029252881 이거 개웃기네 ㅋㅋㅋㅋㅋ
-
"오래된" 혹은 outdated 된 학문이라고 생각함. 현상에 대한 연구를 하면...
-
[D-6] ✨2025 서울시립대학교 오픈 캠퍼스 투어 ✨ 1
[2025 서울시립대학교 오픈 캠퍼스 투어] 안녕하세요! 함께 꿈을 이루어 나가는...
-
예비는 얼마돌거같음?
-
좋아 12
좋은 아침이라는 뜻
-
하늘이 맑다 4
아.
-
얼버기 1
-
"공무원 하느니 닭 튀길래요" 공무원 선호도, 자영업보다 뒤져 3
성별로 선호하는 직장을 보면 남자는 대기업(28.9%), 공기업(18.8%),...
-
뇌가 늙은 남자 4
아니 뭐가 문젠거임 뭐가
-
>>>로스쿨, 고시 진로가 아닌 사람에게도<<< 닥후인 이유가 뭘까요 입결도 안...
-
한완수 너무 마음에 들던데... 고민되네..
-
부산 근황 1
눈 1도 안 왔어요 너무 맑아요
-
나 잡담태그도 잘 달았는데
-
눈사람 만들사람 2
댓글에 눈사람 ⛄️ ☃️
-
눈이라곤 찾아볼 수 없다
-
‼️중앙대학교 경제학부 25학번 새내기를 찾습니다‼️ 0
‼️중앙대학교 경제학부 25학번 새내기를 찾습니다‼️ 안녕하세요, 의혈중앙 민주경제...
-
1만 이상??
-
.....................?
-
부산은 어떤감요?
-
얼부기 3
-
아는 형 연대 사회 나와서 삼일회계 갔는데 가능한가 연대 사회 커리어면 ㅇㅇ.??
-
메가스터디 vs 대성마이맥 (패스)
-
궁금합니다
-
누비 질문! 0
이해원 n제 시즌2 매년 전문항 신규제작인가요?
-
거의 러시아급 독서실 못가겠네 ㅋㅋ
-
아하
-
비문학은 이미 문제 먼저로 체제 잡고 기출 풀면 평균 1개씩 틀리는데 문학은 진짜...
-
이원준 김상훈 0
김동욱쌤 수국김 끝내고 일클 듣는중인데 문학이 너무 아닌거 같아서 아예 바꾸려고...
-
손가락이 개잘려버리네
-
겨울방학때 수1 수2 미적 공부 비중을 어떻게 두는게 젤 좋을까요?? 정시고...
-
어떤 복소수의 역수는 원래의 복소수의 켤레복소수 맞나욤??
-
베르테르 11번 푸리 11
쉬우네요
-
근데 먼가 제설 한 번 더 할거 같긴한데..
-
눈 미친거같은데 8
독서실 가기싫네 눈 아직도 펑펑 오는중
-
수특 문학,독서사서 한번이라도 다 풀어본적 없으면 개추ㅋㅋ 2
매년 사도 풀어본적이 없음ㅋㅋ 걍 올해는 안사려고 김승리 KBS만 하게
-
안녕하세요 '지구과학 최단기간 고정 1등급만들기' 저자 발로탱이입니다. 지난 1년간...
-
최고 점수가 5점입니다.. 6점 이상은 재능의 영역일까요? 뭐가 문제일까유 ㅠㅠ
-
이감 팩트폭력 ㅆㅅㅌㅊ 10
"시험지의 형식만 보았을 때는 9월 모의평가에 가까운 난도로 보기 쉽지만, 이는...
-
수분감 인강 0
-
대학커뮤니티 노크에서 선발한 경희대 선배가 오르비에 있는 예비 경희대학생, 경희대...
-
사탐런으로
-
왜케 빨리깻지 1
음..
-
뱃지 5
24일에 신청했는데 원래 늦나??ㅜ
-
ㅈㄱㄴ
-
오늘 하루도 화이팅
-
피코햄 웃겼던거 12
논란 때 오르비에 입장문 발표할 때마다 계속 맞춤법 틀렸음
-
이 모양 아버지 이 모씨, “수능 사탐은 공부할 필요가 없다”발언… 직접 세계사 풀어보니 ‘5등급’ 25
한 달 공부해서 1찍겠다고(정치x, 등급o) 공약거심 ㄷㄷ