킬러 3문제 먹방
-음.. 시작부터 개같은 게 나왔구만!
-먼저 주어진 함수 f(x)의 개형을 그려보자. 저걸 직접 적분하는 건 미친 짓이니까 개형으로 추론을 해보자는 거지. 이때 y<0의 두 구간의 넓이를 각각 A라고 두자. 우함수니까 넓이는 서로 같아.
-g(x)가 f(x)의 적분에 대한 식으로 나타나있네. 먼저 a가 왼쪽으로 멀리 떨어져있을 때를 보자. g(x)의 그래프가 x축과 만나는 점이 2개가 돼야 하는데 그렇지 않지? Pass.
-특정 구간의 넓이가 저 그림처럼 2A일 때의 a를 보자. 이땐 조건에 부합하네. 그러면 이때의 a가 바로 α1임을 알 수 있어. Check!
-또한 a가 α1일 때 극소를 갖는 곳이 x=1이라고 했으니 p=1. 따라서 c=ln2.
-a=-1일 때를 보자. α1<a<-1 일 땐 어차피 안 돼. 그러면 교점이 3개가 되거든. 이건 자기 머릿속으로 상상해서 그려보도록 하고. 아무튼 a=-1이라면 조건에 맞게 g(x)가 그려짐을 알 수 있어. 즉 이때의 a가 바로 α2!
-a=0이라면 교점이 3개가 되므로 안 돼!
-a=1이면 교점이 2개가 되는군! 이때의 a는 α3야!
-a가 우측 상단 그림과 같이 특정 구간의 넓이가 2A가 되는 곳에 있다면 g(x)는 역시 조건에 맞게 그려지지. 이때 a는 α4.
-a를 오른쪽으로 더 멀리 잡아보면 여기서부터 g(x) 그래프가 조건에 맞지 않게 그려짐을 알 수 있어.
-그러면 결국 조건을 만족하는 a의 개수는 m=4야.
-(나) 조건을 보자. (나)는 a=α1일 때 만족한다는 것에 주의해! 그림처럼 f(x)는 우함수고 넓이 표시도 저렇게 y축 대칭을 이루므로 α1=-α4이고, 각 부분의 넓이를 A에 대해 표현했으니 이걸 가지고 분석해보면....
-드디어 알아냈다. 저 g(x)에 관한 적분은 부분적분을 활용해야 했어. g(α4), g(-α4)는 g(x)의 개형을 참고하면 바로 나와. 각각 2A, 0이지. 그리고 g(x)가 f(x)에 관한 적분이므로 g'(x)=f(x)고, xf(x)=xln(x4+1)-xln2는 기함수라는 걸 알아야 해.
-이것이 문제 정답 여부를 결정한다. 기함수를 -a, a까지 적분한 값은 0이란 거 알지? 이걸 이용하면 결과가 간단히 나온다. 즉, k=2.
-최종 답은 16.
-먼저 (나)의 식은 모든 실수 x에 대해 성립한다고 했으니 x=0, -a를 집어넣어보자. 왜 하필 0, -a냐면, f(x)가 우함수이고, 우함수는 y축 대칭이므로 0부터 a까지 적분한 값과 -a부터 0까지 적분한 값은 서로 같을 것 아냐? 그걸 이용하고자, 0, -a를 집어넣은 거지.
-a를 구해보자. a의 범위가 문제에 주어져 있으므로 이것까지 고려하면 a의 값이 나오게 된다.
-자, 이제 (나)의 식을 미분하고, 한 번 더 미분해보자. 이제 주어진 닫힌 구간 [0, a/2]에서의 함수 f(x)를 활용해볼 거야.
-(나)를 한 번만 미분한 식을 활용해보자. f(x)가 우함수임을 응용하기 위하여 두 번째 식에 있는 x+5π/3이 -x와 같아지도록 하는 x의 값 -5π/6을 두 번째 식에 대입해볼 거야. 근데 쓸모없는 시도였네. f(x)=f(-x)니까...
-그러면 (나)를 두 번 미분한 식을 사용하자. 똑같이 x=-5π/6을 대입하면 f'(x)=-f'(-x)이므로 f'(5π/6)을 얻을 수 있고, 5π/6은 주어진 닫힌 구간 내에 있으니 이 구간 내의 함수의 도함수의 식에 대입해서 정리하면 b, c에 관한 식을 얻을 수가 있지!
-다음으로 (나)의 식에 x=-a/2를 대입해보자. 그리고 닫힌 구간 [0, a/2]에서의 함수를 0부터 a/2까지 적분해보자. 그 둘을 우함수의 성질을 생각해서 비교해보자. 그러면 b, c에 관한 또 다른 식이 나오게 된다.
-그럼 b, c의 값들을 구할 수 있어!
-최종 답은 83!!!
-먼저 단순하게 구할 수 있는 것부터 구해. g(1)의 값을 통해 f(1)을 찾아내고, f(x)가 x=a에서 극대라고 하니 f'(a)=0임을 인지하고.
-자! 그 다음은 "뭐 어쩌라고"라고 생각하지 말고, 먼저 (나)조건부터 살펴보자. f(a)가 0인지, 아닌지에 따라 경우가 나눠지게 돼. 0이 아니면 그냥 g'(x)에 a를 집어넣으면 되는 반면, f(a)가 0이라면 극한을 통해서 g'(a)를 구해야지. 어차피 g(x)는 실수 전체에서 미분가능하다고 했으니 x=a에서의 g'(x)의 극한값은 결국 g'(a)랑 같잖아.
-먼저 f(a)=0일 때야. 이때 각 식이 극한을 적용했을 때 수렴할 수 있게 되는지 확인만 하면 돼. 먼저 우측 식. 분자는 f'(a)=0이므로 0으로 가고, 분모는 f(a)=0이니 0으로 가지? 0/0꼴이니 OK.
-다음은 좌측 식. 분모에서 f(a)=0이므로 분모에서 sin(πa)=0이어야 하네. a>0이라고 문제에서 주어져 있으니 a는 결국 자연수라는 소리잖아?
-f(a)≠0일 땐 그냥 g'(x)에 x=a를 집어넣으면 돼. 우측 식은 0이란 걸 금방 알 수 있고, 좌측 식에서는 분모에서 f(a)≠0이니 분자에서 sin(πa)=0이어야 하는군. 어라? 이때도 a는 자연수여야 하네.
-a가 자연수라는 것도 알았어. (나) 분석은 잠시 중단하고, (가) 조건을 봐보자. 먼저 g'(0). 만약 f(0)이 0이 아니라면 g'(x)에 x=0을 대입했을 때 나오는 g'(0)=0이 되는데, 이는 (가)와 모순이지? 즉, f(0)=0이야.
-g'(2a). f(2a)가 0이 아니라면 g'(2a)는 0이란 걸 계산을 통해 알 수 있어. 이때 계산 과정에서 a는 자연수이므로 2a는 짝수라는 걸 알아야 해. 그러나 g'(2a)=0은 (가)와 모순되지. 따라서 f(2a)=0.
-f(0)=f(2a)=0이라는 것도 얻었겠다, 이제 다시 (나)를 분석해보자고. (나)에서 f(a)가 0이냐, 아니냐에 따라 경우가 나눠졌었지. 먼저 f(a)=0일 때를 봐볼까. 그러면 g(a)는 x=a에서의 g(x)의 극한값과 같으니(g(x)가 실수 전체의 집합에서 미분가능하므로) 식은 저 중앙의 빨간 식으로 표현돼. f(x)의 식을 저 파란 식으로 표현하고, f'(a)=0임을 이용하면 f(x)를 단 2개의 미지수 p, a로 표현된(x 제외) 식으로 나타낼 수 있어.
-f(x)는 x=a에서 극대라고 하니 p는 양수이지.
-자, 이제 아까 그 극한식을 계산해보자. 이때 t=x-a로 둬서 극한식을 변형해야 해. 그리고 a는 자연수니 sin(πt+πa)=±sin(πt)인데 제곱하면 어차피 +가 되니 상관없어. 그러나 제곱하지 않은 1+cos(πt+πa)는 얘기가 달라져. 일단 저대로 두도록 하자.
-여기서 a가 홀수면 분모가 0이 되는 대참사가 벌어지므로 a는 무조건 짝수여야 해. 그러면 pa2의 값을 구할 수 있어!
-아까 p는 양수고, a는 자연수 중 짝수라고 했잖아. 그럼 pa2>0이라는 소리인데, -64/7라고...? 뭔가 이상하지? 이 결과가 나오는 경우는 f(a)=0일 때였어. 그 말인즉슨, f(a)=0인 경우는?
-f(a)가 0이 아니라는 소리네. f(0)=f(2a)=0, f'(a)=0임을 이용해 f(x)의 식을 p, a, c, d에 대해서 세우고, 중앙에 세운 빨간 극한식도 참고해서 접근해보자. 그러면 c=-2a임을 알 수 있지.
-g(0)의 극한식을 볼 거야. 식을 정리하다 보면 분모에는 x2이 있어야 하므로 d=0인 걸 알 수 있어.
-이제 극한을 풀면 pa2의 값이 나오게 돼.
-c, d, pa2도 구했겠다, f(x)의 식을 p, a에 대해서 변형시키고, f(1)=7을 통해서 a를 구해보자. 이때 a는 자연수임을 기억해야 해. 그러면 a=4가 나오고 p는 pa2의 값에 의해서 1/7로 나와.
-그럼 f(x)의 식을 다 구한 셈이지 뭐. g(-1)을 계산하고 정리하면 최종 답은 95!!!!!!!!!!!
-(나)에서 얻은 g(1)=0을 통해 (가)에 대입해서 g(2)를 구하고, g(2)=0임을 통해 다시 (가)에 대입해서 g(3)를 구하다보면... 결국 g(x)의 x 자리에 정수가 들어가면 함숫값이 0임을 확인할 수 있네.
-자, 여기서부터 굉장히 중요한 과정이 시작된다. 먼저 (나)를 미분한 다음 f(x+1)-f(x)=? 꼴로 고쳐. 그리고 (가)의 양변을 ex로 나눠. 이제 두 식에 있는 공통항 e-xg(x)를 소거하면 f(x+1)-f(x)에 대한 식이 보라색 식으로 표현됨을 알 수 있어.
-g(정수)=0임을 이용해보자. n이 정수라고 둬. 그리고 f(x+1)-f(x)=(뭐시기) 의 양변을 n부터 n+1까지 적분해서 정리해보자. 이때 좌변의 1번째 적분식은 치환적분을, 우변의 2번째 적분식은 부분적분을 적용했어. 그러면 맨 아래의 식처럼 매우 간결(?)하게 나오지?
-이제 n이 정수라고 했으므로 n=0, 1, 2, ...를 대입해가면서 파란색 적분식들의 값을 각각 구해보자. 구하다보면 어떤 규칙이 보이는 걸 인지할 수 있어. -자, 이렇게 나타나게 된다. 그럼 게임 끝났지?
-따라서 최종 답은 26.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
대 르 비
-
3년 내내 학교다니면서 스트레스 엄청 받지 않으셨나요 쌤들이 말하는게 다...
-
3년만이야… 하…...
-
지베가지마 베이베 10
약간 mz같네 이노래
-
군대? 3
나민증 발급도 안한 응앤데
-
아
-
전 일단 수시 의/정시 한의 설공 이정도(정시 커하는 인설의)
-
연세대 의대인가 그거 최초합 합격증인증 D-며칠 이렇게 하다가 진짜 합격하신분
-
이걸 못 본다고? 부정선거 없다는 사람들 시력 검사 필요함ㅋㅋ 0
0.7%p로 미세하게 이긴거 안보임?ㅋㅋ 그리고 찢재명은 왜 평소랑 다르게 불복하지...
-
작년 내내 공부했는데 만족스럽네요
-
네
-
뭐지 이사람들은 3
여기 분위기 이상해졌어 이쁜애면 그냥 말잘듣는애구나 생각해줘도 되잖아
-
공군 너무 복잡해...
-
이 녀석보다 똑똑해짐 특히 요즘 에피소드 보면 노진구의 학업 성적은 몰라도...
-
ㅋㅋㅋ 입시판 재미가 이런건가
-
하반기가면서 과탐 시간늘리고 이런식으로 운영하는게 정배?
-
미적과탐 - 이과 확통사문 - 문과 미적사탐 - 굳이 확통과탐 - 뭐지
-
ㄱ
-
1. 고2때까지 수학에 대해서 자신이 없었음.(우울증을 자가치료하는 상황에 2학년...
-
국영수가 셋다 너무 하기 ㅈ같은데 과학은 덜 ㅈ같고 문풀하다보면 오히려 흥미가 있음...
-
이거 어떻게앎?? 며칠에 발표하는지 나옴?
-
수능 긑나고도 말했던 거 같긴 한데
-
쉽지않네.. 3
눈안뜨고싶다
-
학원 전부 정리하는중에 내과외가 정리당했는데 어캄 ㅋㅋ
-
칵테일만 묵다가 5
생맥 마시니까 마시따
-
수학과외 잡음 6
나 자신을 과외 하기로함 근데 맨날 숙제 안해옴 그래서 나도 대충하는 중임 서로 말...
-
성대 사과 0
가군 217명 모집 예비 27 될까요..?
-
전 한 번도 못 봤는데 열품타 켜두고 쳐자는고 말고 집중 상태로 14~15시간이...
-
공스타특 2
책 다 펼침 대각선으로 겹쳐서 놓음 글씨 레전드
-
아직도 모름? 부정선거 부정하는 사람들 5초 컷 논리 박살 3
시원하게 그냥 딱! 사전투표 선거인명부가 서버에만 있으니까! 논란되는 몇군데....
-
안녕하세요 '지구과학 최단기간 고정 1등급만들기' 저자 발로탱이입니다. 지난 1년간...
-
평균 6등급인데 과탐 지1 생1임 생1은 너무 재미없고 힘든데 지1은 할만함 사탐은...
-
https://m.dcinside.com/board/physics2/694043...
-
친목 뜻 5
친할 친 나무 목 ->나무의 관계만큼 친하다
-
걍 30빼고 다 풀긴했는데 너무 불안했음 21 22 29 얘네가 확신하기가...
-
문과인데 외대 건대를 왜 고민함? 닥 외대 아님?
-
곧 놀러가는데 맛집이나 할 거 등등 좀 추천해주시면 감사하겠습니다
-
작수 백분위 81로 3등급입니다 수능 끝난 이후로 수학에 손놓고 살았더니 미적의...
-
마스터한테 배우니까 개박다가 피드백 받으면서 하니까 1142 해버림 레전드
-
실존인물을 극도로 싫어하게되는걸 이해를 못하겠음 단순히 싫어하는건 그럴수있는데...
-
심심하당 6
심심
-
약간 개념이나 건실하게 하는건 부실한데 그냥 직관이랑 개형찍기로 얻은 점수인것같아서...
-
열품타나 공스타 같은데 보면 매일 공시 14시간, 16시간 찍는 분들 계시던데...
-
그냥오렌지주스였음 오렌지에이드라 탄산있는건줄 ㅠ
-
솔직히 진로도 아니었고 그냥 재미로 시험봤었는데 면접 때 그냥 혼이 나갈 정도로...
-
어떻게 하는지 잘 모르겠어요ㅠㅠ
191029도 풀어주세요
그해 수특과 상당히 비슷하더군요
만화가 2000년대 감성이라 너무 좋네요 ㅋㅋㅋㅋ