킬러 3문제 먹방
-음.. 시작부터 개같은 게 나왔구만!
-먼저 주어진 함수 f(x)의 개형을 그려보자. 저걸 직접 적분하는 건 미친 짓이니까 개형으로 추론을 해보자는 거지. 이때 y<0의 두 구간의 넓이를 각각 A라고 두자. 우함수니까 넓이는 서로 같아.
-g(x)가 f(x)의 적분에 대한 식으로 나타나있네. 먼저 a가 왼쪽으로 멀리 떨어져있을 때를 보자. g(x)의 그래프가 x축과 만나는 점이 2개가 돼야 하는데 그렇지 않지? Pass.
-특정 구간의 넓이가 저 그림처럼 2A일 때의 a를 보자. 이땐 조건에 부합하네. 그러면 이때의 a가 바로 α1임을 알 수 있어. Check!
-또한 a가 α1일 때 극소를 갖는 곳이 x=1이라고 했으니 p=1. 따라서 c=ln2.
-a=-1일 때를 보자. α1<a<-1 일 땐 어차피 안 돼. 그러면 교점이 3개가 되거든. 이건 자기 머릿속으로 상상해서 그려보도록 하고. 아무튼 a=-1이라면 조건에 맞게 g(x)가 그려짐을 알 수 있어. 즉 이때의 a가 바로 α2!
-a=0이라면 교점이 3개가 되므로 안 돼!
-a=1이면 교점이 2개가 되는군! 이때의 a는 α3야!
-a가 우측 상단 그림과 같이 특정 구간의 넓이가 2A가 되는 곳에 있다면 g(x)는 역시 조건에 맞게 그려지지. 이때 a는 α4.
-a를 오른쪽으로 더 멀리 잡아보면 여기서부터 g(x) 그래프가 조건에 맞지 않게 그려짐을 알 수 있어.
-그러면 결국 조건을 만족하는 a의 개수는 m=4야.
-(나) 조건을 보자. (나)는 a=α1일 때 만족한다는 것에 주의해! 그림처럼 f(x)는 우함수고 넓이 표시도 저렇게 y축 대칭을 이루므로 α1=-α4이고, 각 부분의 넓이를 A에 대해 표현했으니 이걸 가지고 분석해보면....
-드디어 알아냈다. 저 g(x)에 관한 적분은 부분적분을 활용해야 했어. g(α4), g(-α4)는 g(x)의 개형을 참고하면 바로 나와. 각각 2A, 0이지. 그리고 g(x)가 f(x)에 관한 적분이므로 g'(x)=f(x)고, xf(x)=xln(x4+1)-xln2는 기함수라는 걸 알아야 해.
-이것이 문제 정답 여부를 결정한다. 기함수를 -a, a까지 적분한 값은 0이란 거 알지? 이걸 이용하면 결과가 간단히 나온다. 즉, k=2.
-최종 답은 16.
-먼저 (나)의 식은 모든 실수 x에 대해 성립한다고 했으니 x=0, -a를 집어넣어보자. 왜 하필 0, -a냐면, f(x)가 우함수이고, 우함수는 y축 대칭이므로 0부터 a까지 적분한 값과 -a부터 0까지 적분한 값은 서로 같을 것 아냐? 그걸 이용하고자, 0, -a를 집어넣은 거지.
-a를 구해보자. a의 범위가 문제에 주어져 있으므로 이것까지 고려하면 a의 값이 나오게 된다.
-자, 이제 (나)의 식을 미분하고, 한 번 더 미분해보자. 이제 주어진 닫힌 구간 [0, a/2]에서의 함수 f(x)를 활용해볼 거야.
-(나)를 한 번만 미분한 식을 활용해보자. f(x)가 우함수임을 응용하기 위하여 두 번째 식에 있는 x+5π/3이 -x와 같아지도록 하는 x의 값 -5π/6을 두 번째 식에 대입해볼 거야. 근데 쓸모없는 시도였네. f(x)=f(-x)니까...
-그러면 (나)를 두 번 미분한 식을 사용하자. 똑같이 x=-5π/6을 대입하면 f'(x)=-f'(-x)이므로 f'(5π/6)을 얻을 수 있고, 5π/6은 주어진 닫힌 구간 내에 있으니 이 구간 내의 함수의 도함수의 식에 대입해서 정리하면 b, c에 관한 식을 얻을 수가 있지!
-다음으로 (나)의 식에 x=-a/2를 대입해보자. 그리고 닫힌 구간 [0, a/2]에서의 함수를 0부터 a/2까지 적분해보자. 그 둘을 우함수의 성질을 생각해서 비교해보자. 그러면 b, c에 관한 또 다른 식이 나오게 된다.
-그럼 b, c의 값들을 구할 수 있어!
-최종 답은 83!!!
-먼저 단순하게 구할 수 있는 것부터 구해. g(1)의 값을 통해 f(1)을 찾아내고, f(x)가 x=a에서 극대라고 하니 f'(a)=0임을 인지하고.
-자! 그 다음은 "뭐 어쩌라고"라고 생각하지 말고, 먼저 (나)조건부터 살펴보자. f(a)가 0인지, 아닌지에 따라 경우가 나눠지게 돼. 0이 아니면 그냥 g'(x)에 a를 집어넣으면 되는 반면, f(a)가 0이라면 극한을 통해서 g'(a)를 구해야지. 어차피 g(x)는 실수 전체에서 미분가능하다고 했으니 x=a에서의 g'(x)의 극한값은 결국 g'(a)랑 같잖아.
-먼저 f(a)=0일 때야. 이때 각 식이 극한을 적용했을 때 수렴할 수 있게 되는지 확인만 하면 돼. 먼저 우측 식. 분자는 f'(a)=0이므로 0으로 가고, 분모는 f(a)=0이니 0으로 가지? 0/0꼴이니 OK.
-다음은 좌측 식. 분모에서 f(a)=0이므로 분모에서 sin(πa)=0이어야 하네. a>0이라고 문제에서 주어져 있으니 a는 결국 자연수라는 소리잖아?
-f(a)≠0일 땐 그냥 g'(x)에 x=a를 집어넣으면 돼. 우측 식은 0이란 걸 금방 알 수 있고, 좌측 식에서는 분모에서 f(a)≠0이니 분자에서 sin(πa)=0이어야 하는군. 어라? 이때도 a는 자연수여야 하네.
-a가 자연수라는 것도 알았어. (나) 분석은 잠시 중단하고, (가) 조건을 봐보자. 먼저 g'(0). 만약 f(0)이 0이 아니라면 g'(x)에 x=0을 대입했을 때 나오는 g'(0)=0이 되는데, 이는 (가)와 모순이지? 즉, f(0)=0이야.
-g'(2a). f(2a)가 0이 아니라면 g'(2a)는 0이란 걸 계산을 통해 알 수 있어. 이때 계산 과정에서 a는 자연수이므로 2a는 짝수라는 걸 알아야 해. 그러나 g'(2a)=0은 (가)와 모순되지. 따라서 f(2a)=0.
-f(0)=f(2a)=0이라는 것도 얻었겠다, 이제 다시 (나)를 분석해보자고. (나)에서 f(a)가 0이냐, 아니냐에 따라 경우가 나눠졌었지. 먼저 f(a)=0일 때를 봐볼까. 그러면 g(a)는 x=a에서의 g(x)의 극한값과 같으니(g(x)가 실수 전체의 집합에서 미분가능하므로) 식은 저 중앙의 빨간 식으로 표현돼. f(x)의 식을 저 파란 식으로 표현하고, f'(a)=0임을 이용하면 f(x)를 단 2개의 미지수 p, a로 표현된(x 제외) 식으로 나타낼 수 있어.
-f(x)는 x=a에서 극대라고 하니 p는 양수이지.
-자, 이제 아까 그 극한식을 계산해보자. 이때 t=x-a로 둬서 극한식을 변형해야 해. 그리고 a는 자연수니 sin(πt+πa)=±sin(πt)인데 제곱하면 어차피 +가 되니 상관없어. 그러나 제곱하지 않은 1+cos(πt+πa)는 얘기가 달라져. 일단 저대로 두도록 하자.
-여기서 a가 홀수면 분모가 0이 되는 대참사가 벌어지므로 a는 무조건 짝수여야 해. 그러면 pa2의 값을 구할 수 있어!
-아까 p는 양수고, a는 자연수 중 짝수라고 했잖아. 그럼 pa2>0이라는 소리인데, -64/7라고...? 뭔가 이상하지? 이 결과가 나오는 경우는 f(a)=0일 때였어. 그 말인즉슨, f(a)=0인 경우는?
-f(a)가 0이 아니라는 소리네. f(0)=f(2a)=0, f'(a)=0임을 이용해 f(x)의 식을 p, a, c, d에 대해서 세우고, 중앙에 세운 빨간 극한식도 참고해서 접근해보자. 그러면 c=-2a임을 알 수 있지.
-g(0)의 극한식을 볼 거야. 식을 정리하다 보면 분모에는 x2이 있어야 하므로 d=0인 걸 알 수 있어.
-이제 극한을 풀면 pa2의 값이 나오게 돼.
-c, d, pa2도 구했겠다, f(x)의 식을 p, a에 대해서 변형시키고, f(1)=7을 통해서 a를 구해보자. 이때 a는 자연수임을 기억해야 해. 그러면 a=4가 나오고 p는 pa2의 값에 의해서 1/7로 나와.
-그럼 f(x)의 식을 다 구한 셈이지 뭐. g(-1)을 계산하고 정리하면 최종 답은 95!!!!!!!!!!!
-(나)에서 얻은 g(1)=0을 통해 (가)에 대입해서 g(2)를 구하고, g(2)=0임을 통해 다시 (가)에 대입해서 g(3)를 구하다보면... 결국 g(x)의 x 자리에 정수가 들어가면 함숫값이 0임을 확인할 수 있네.
-자, 여기서부터 굉장히 중요한 과정이 시작된다. 먼저 (나)를 미분한 다음 f(x+1)-f(x)=? 꼴로 고쳐. 그리고 (가)의 양변을 ex로 나눠. 이제 두 식에 있는 공통항 e-xg(x)를 소거하면 f(x+1)-f(x)에 대한 식이 보라색 식으로 표현됨을 알 수 있어.
-g(정수)=0임을 이용해보자. n이 정수라고 둬. 그리고 f(x+1)-f(x)=(뭐시기) 의 양변을 n부터 n+1까지 적분해서 정리해보자. 이때 좌변의 1번째 적분식은 치환적분을, 우변의 2번째 적분식은 부분적분을 적용했어. 그러면 맨 아래의 식처럼 매우 간결(?)하게 나오지?
-이제 n이 정수라고 했으므로 n=0, 1, 2, ...를 대입해가면서 파란색 적분식들의 값을 각각 구해보자. 구하다보면 어떤 규칙이 보이는 걸 인지할 수 있어. -자, 이렇게 나타나게 된다. 그럼 게임 끝났지?
-따라서 최종 답은 26.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
칵테일만 묵다가 5
생맥 마시니까 마시따
-
수학과외 잡음 6
나 자신을 과외 하기로함 근데 맨날 숙제 안해옴 그래서 나도 대충하는 중임 서로 말...
-
성대 사과 0
가군 217명 모집 예비 27 될까요..?
-
전 한 번도 못 봤는데 열품타 켜두고 쳐자는고 말고 집중 상태로 14~15시간이...
-
공스타특 2
책 다 펼침 대각선으로 겹쳐서 놓음 글씨 레전드
-
아직도 모름? 부정선거 부정하는 사람들 5초 컷 논리 박살 3
시원하게 그냥 딱! 사전투표 선거인명부가 서버에만 있으니까! 논란되는 몇군데....
-
평균 6등급인데 과탐 지1 생1임 생1은 너무 재미없고 힘든데 지1은 할만함 사탐은...
-
https://m.dcinside.com/board/physics2/694043...
-
친목 뜻 5
친할 친 나무 목 ->나무의 관계만큼 친하다
-
걍 30빼고 다 풀긴했는데 너무 불안했음 21 22 29 얘네가 확신하기가...
-
문과인데 외대 건대를 왜 고민함? 닥 외대 아님?
-
곧 놀러가는데 맛집이나 할 거 등등 좀 추천해주시면 감사하겠습니다
-
작수 백분위 81로 3등급입니다 수능 끝난 이후로 수학에 손놓고 살았더니 미적의...
-
마스터한테 배우니까 개박다가 피드백 받으면서 하니까 1142 해버림 레전드
-
실존인물을 극도로 싫어하게되는걸 이해를 못하겠음 단순히 싫어하는건 그럴수있는데...
-
심심하당 6
심심
-
약간 개념이나 건실하게 하는건 부실한데 그냥 직관이랑 개형찍기로 얻은 점수인것같아서...
-
열품타나 공스타 같은데 보면 매일 공시 14시간, 16시간 찍는 분들 계시던데...
-
그냥오렌지주스였음 오렌지에이드라 탄산있는건줄 ㅠ
-
솔직히 진로도 아니었고 그냥 재미로 시험봤었는데 면접 때 그냥 혼이 나갈 정도로...
-
어떻게 하는지 잘 모르겠어요ㅠㅠ
-
뱃지어케달아요 7
ㅈㄱㄴㄴㄴㄴ
-
수학 시간이었는데 감독관님이 제가 책상에 올려둔 손목시계를 도장 찍다가 떨구셔서 ㅠ...
-
설약 목표.. 1
과탐 2과목 하나 이상 필수 인가요 ?? ㅜㅠ 물1지1 하고 잇어요
-
한석원 커리 타려고 하는데 생각의 질서+쎈 하고 바로 알파테크닉 들어가도 되나요??...
-
개웃기네 진짜
-
26교재 25교재에서 많이 바뀌었나요? 새로 사기 아까워서요…
-
메가패스 있음 유튜브 있음
-
프사 바꾸려는데 0
리즈 사진 모아둔 폴더 없어졋어..
-
데이트해야지 1
호호
-
일반고 내신 때 문학은 5등급 떴는데 언매는 2등듭 떴어요 물론 언매 때 좀 더...
-
이번에 인하대 25학번 입학 예정입니다 ! 컴공 혹은 전화기 쪽으로 가려 하는데...
-
걍 왠지 모르게 말투가 띠껍게느껴짐 시험날이라 예민해서그런가 나 문제푸는데 감독싸인...
-
ㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠ이젠 믿을구석이없어 수학이 떨어지면 재수하는게 무슨의미가있어...
-
다 맞아서 오오오 이러다가 16 찍 17 찍 18 O 19 찍 20 찍 나온 거...
-
시대 라이브 강의 선택적으로 들어도 되는 시스템임? 1
6모 이후 신청해서 분석 수업 듣고 끊고, 9모 이후 신청해서 분석 듣고 끊고,...
-
올해는 가야하는데...ㅋㅋㅋㅋㅋㅋ 차라리 조기발표 해주면 좋겠다
-
자랑할 만한 대학은 아니지만 간절합니다 ㅠ 가능할까요?
-
감다뒤 ㄹㅈㄷ
-
무물보 29
암거나ㄱㄱ...
-
윈터스쿨 모의고사 성적표를 받았는데 국어수학 거진 다 꼴지 수준임 솔직히 우리 집안...
-
아..............
-
으엑 일단 도전해봐야지
-
끼얏호우!!!!!!!!!!!!!!
-
나만영어못해 12
카투사인데미군이말걸면눈물남
-
매주 5일차 하프모고 풀면 다 맞거나 1문제 정도 틀리는데 이 정도면...
-
조건 동치해석, 조건간 관계성파악, 핵심조건과 부수조건 구분하기위해 그래프이용 결국...
-
재종 고민 2
안녕하세요! 이번에 오르비에 가입하면서 처음 글을 써봅니다! 이번에 재수하게 되어...
191029도 풀어주세요
그해 수특과 상당히 비슷하더군요
만화가 2000년대 감성이라 너무 좋네요 ㅋㅋㅋㅋ