극한 상쇄 풀이는 오류가 아닙니다
h(x)의 식이 우극한으로 정리된 형태라 복잡하니
g(x+) x g(x+2)로 편하게 바꾸겠습니다 다른 보기는 넘어가고 ㄴ보기만 보겠습니다
h(x)의 연속 여부를 따지고 있습니다. 일단 의심되는 지점으로 1, -1 , -3지점을 잡는건 당연하고 직접 함수식을 적어서 다뤄도 되지만 저는 g(x+) x g(x+2)의 극한식에서 처리했습니다 (두 관점이 정확히 같습니다)
h(x)의 좌극한값을 파악할때는 x값을 정의하는것이 뒤의 우극한을 보내는 것 보다 우선입니다 x를 1보다 작은 값, 좌극한 값으로 이미 정의되어있으니 뒤의 우극한이 붙어있어도 1의 왼쪽의 값을 보는것이 맞습니다.
즉 사진에 첨부된 것 처럼 g((1-)+)의 이중 극한 형태는 결국
g(1-)로 볼 수 있으니 결국 f(1-)와 같습니다 이때 f는 다항함수라는 조건이 있므로 f(1-) =f(1)과 같게 볼 수 있고 이 경우가 흔히 상쇄의 케이스로 말해지는 것 같습니다 이 경우 f(1)=1임을 확정할 수 없으므로 ㄴ 보기는 모순입니다
풀이에 오류가 있다 생각하시는 분은 댓글 부탁드립니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
정시의벽 파마산 파마늘 레츠고
-
네,
-
시대인재 4
중복 지원 가능한가용?? 대치/목동 인문/자연 우선/선착/성적 이론상 12개 지원...
-
서폿 잘못 만나면 진짜 인생 끝장나
-
200억 있으면 0
실모사서 킬러만 풀고 버릴거임
-
선넘질받 15
님보넓 가능 고소 안함
-
쇼메, 스매시, 비디디 덕분에 연휴 편-안하게 보낸다 1
고맙다 얘들아!!
-
목동 시대인재 반수반은 그해 6평 성적으로도 가능한가요?
-
시대 재종 1
존나 비싸네 가서 애매하게 하면 부모님 등골 반으로 접힐듯
-
인문계만 될줄
-
07정시러 도와주세요 고2때부터 정시공부 시작했고 국어 영어 노베입니다...
-
고1 내신성적 2.4정도 고2 3.2 정도 고3 때 놓아서 평균 4.5 정도 결국...
-
맞팔 ㄱㄱ 4
-
고마웠어요! 。◕‿◕。 금방 잊어줘요 이미지는 강렬하게 남았겠지만 ,,
-
하기 싫은데 키게됨 칼바람도 재밌는 듯
-
의외로 기준이 연전전정도밖에 안되나? 내정시로 os가된다고?
-
어 비상 3
재구매 안하신다
-
지방에서 현강 다니시는분들은 어떻게 하나요? 한번도 현강을 가본적이 없어서ㅜ...
-
시대 개비싸구나 6
미친 220…? 와..근데 저게 끝이아니지않나 노장학이면 ㅇ..ㅘ
-
시대재종 오류 0
성적확인을 눌렀는데 입력한 정보에 오류가 있다고하네요. 근데 응시원서 접수는...
-
후하후하후하후하후하후하 10
-
시대 접수 0
접수 완료하면 문자 오나요..?? 접수 완료고 문자는 안왔는데 기다리면 오려나요...
-
레벨 올리기 너무 싫은데.......... 누구에게 부탁하기도 그렇고
-
오늘은 공부가 손에 잘 안잡혀서 수학만 팠네요
-
다른건 모르겠고 원준티 선택특강 없음.. 올해도 머리 깨지고 싶었는데
-
수특 단어 킬러 3
상쇄의 뜻은?(수특 125p)
-
스카이대미만잡 취급받을 지방 의치한약수면 개추 ㅋㅋ
-
바로 프린트당 메일 보내버리기
-
선착순 5명 천덕 33
-
공중분해!! 되는건 아니구 제가 옯 생활하면서 가장 고마웠던 세 분께 드릴게요!
-
[고려대학교 25학번 합격] 합격자를 위한 고려대 25 단톡방을 소개합니다. 0
고려대 25학번 합격자를 위한 고려대 클루x노크 오픈채팅방을 소개합니다. 24학번...
-
문제 안 되겠죠..??
-
뻘글 다 지웠어요! 10
여기에 저한테 하고 싶은/싶었던 말 한마디만 해주세요! 자정까진 남아있을거라...
-
롤체나 해야하나 3
4.5 꿀잼이던데
-
동생 졸업식 갔는데 동생 친구 어머니가 나보고 성인 된 거 축하한다 이제...
-
네.
-
정시 기균 0
기균 정시로 몇등급 정도 떠야 인서울 가능한가요?
-
제가 국어 극노베라 독해 방법부터 뜯어고치려고 정석민 t 비독원 수강중입니다....
-
아니면 그냥 시간 때우려고 하는 느낌이라 재미가 읎다… 취미를 만들어야하는데 머가 재밌을까..
-
대학커뮤니티 노크에서 선발한 성균관대 선배가 오르비에 있는 예비 성균관대학생,...
-
파리 따임~ 5
.
-
너는 지금 뭐해 1
자니 밖이야?
-
내가 명절에 슬픈 이유 16
발표가 하나도 안 나서....
-
사지마세요사지마세요사지마세요사지마세요사지마세요사지마세요사지마세요사지마세요사지마세요사지...
-
‘치매’ 걸린 美 남성, 결혼 사실 잊고 아내에게 두 번째 프러포즈 3
[서울신문 나우뉴스] 53세라는 비교적 이른 나이에 알츠하이머병에 걸린 한 남성이...
-
지난 세월은 후회할 필요가 없다지만 아무래도 메디컬 아니고 일반학과면 재수 vs...
아니요 정확히는 그 개념자체가 틀린거에요
이 문제푸는게 중요하기보단
그래서 다른 문제 나오면 틀릴수있어요
본문에 나온 부분 중 개념 오류는 없다고 생각하는데 어느 부분이 틀렸다고 생각하시나요??
위에서 쓰신 풀이는 아무 문제도 없어요
문제는 “g((1-)+)” (=lim (x->1-) lim (t->x+) g(t)) = g(1)이 다항함수가 아닌 케이스에서 일반적으로 성립하지는 않는다는 거죠
극단적으로, g(x) = 2(x-1) sin(1/(x-1)) (x<1, x는 무리수), (x-1) sin (1/(x-1)) (x<1, x는 유리수), 0 (x>=1)에 본문의 논리를 적용하려 한다면, g((1-)+) = lim (x->1-) g(x)조차 성립하지 않아요(첫 번째 극한은 정의되지 않지만, 두 번째 극한은 정의됨)
극한상쇄 풀이가 욕먹는 건 마치 항상 성립하는 내용처럼 말해서 그런 거에요
예를 들어 방정식 dy/dx = 1, y(0)=0을 y에 대해서 풀 때, 위아래의 d를 ‘약분‘해서 y/x=1, y=x와 같이 얻는다면 답은 맞고 풀이도 ‘미분계수=기울기‘라는 점에 집중하면 어느정도 정당화가 가능하지만, dy/dx = x같은 거에서는 성립하지 않으니까 바람직한 풀이는 아니겠죠
저는 2024 6월 미적분 28번과 같은 상황이라 생각하는데요 그 문제 역시 특정 풀이법 (f(x)를 구하는 것 등)이 문제 조건이 조금만 바뀌었어도 바람직한 풀이가 아니라는 논란이 있었죠
고등 수학과정에서 출제진들이 바라던 풀이는 딱 본문정도라고 저는 생각합니다
풀이는 문제에서 주어진 조건 상황하에서 성립하면 문제가 없는거지 굳이 문제에서 나오지 않은 상황을 생각하여 문제삼는게 필요가 없다는게 제 입장입니다.
조금 더 예시를 들어보면
당장 우리가 도함수의 극한의 존재여부로 함수 f(x)의 미분가능성을 따지는게 (연속임이 전제 되었을 경우)
수학 2 문제에서는 전혀 잘못된 것이 아니잖아요?
그런데 우리가 굳이 xsin(1/x)과 같은 무한 진동함수의 반례를 생각하면서 도함수의 극한을 쓰는게 옳지 않다!
라고 하지는 않습니다
실제로 님이 문제삼으시는 문제의 형태가 나왔다면 상쇄라는 해당 풀이는 애초에 나오지 않았다는게 제 입장입니다
저건 아예 글의 기본적 가정조차 성립하지 않는 극단적인 케이스로 잡은 거고, 그냥 g(x)=x (x<1), g(x)=0 (x>=1)만 들고 와도 g((1-)+)=g(1)이 일반적으로 성립하지 않는 건 알 수 있어요
진동 발산의 케이스는 g((1-)+)=g(1-)조차 성립하지 않는 걸 보여주려고 제시한 거에요
그 상황은 다른 상황을 제시하셨으니까요
상쇄가 가능했던 "이유"는 수능 14번 문제의 경우에는
f(x)가 다항함수라 좌극한 값이 곧 함숫값으로 확정이 되성 가능했던 거죠
저 상황에서는 잡으신 함수에 우극한을 취해봤자 그대로인 함수가 되는거니 당연히 g((1-)+)는 함숫값과 같지 않는거니 저런 상황이었다면 애초에 상쇄 풀이가 나오지 않았다는게 제 생각입니다
앞에서 말했던 거랑도 겹치는데, “현우진은 극한상쇄, 즉 g((1-)+)=g(1)과 같은 식이 항상 성립한다고 주장한 게 아니라, 그 문제의 상황에서만 성립한다고 말한 거다“라고 밀고 나간다면, 해설에서 답이 틀린 것도 아니니까 ‘해설에 오류가 없다‘고 말할 수는 있어요
문제는, 글쓴이님과 다르게(그리고 현우진 강사님의 의도와는 별개로) 대부분의 학생들은 저 극한상쇄를 항상, 또는 최소한 문제의 상황보다 훨신 넓은 범주에서 성립하는 걸로 이해했다는 거죠. 그래서 오개념 논란이 생긴 거고요.
수학은 객관성의 과목이지만, 결국 자연어에는 애매함이 있을 수밖에 없어요. 하지만 현우진 강사님의 말을 객관적으로 해석해서 해당 풀이가 어떤 의미였는지를 알 수는 없어도, 아직도 231114의 수분감 해설을 듣고 오개념을 가진 채 질문하는 학생들이 있는 걸 보면 바람직하지 못한 해설이라고는 할 수 있을 것 같네요.