극한 상쇄 풀이는 오류가 아닙니다
h(x)의 식이 우극한으로 정리된 형태라 복잡하니
g(x+) x g(x+2)로 편하게 바꾸겠습니다 다른 보기는 넘어가고 ㄴ보기만 보겠습니다
h(x)의 연속 여부를 따지고 있습니다. 일단 의심되는 지점으로 1, -1 , -3지점을 잡는건 당연하고 직접 함수식을 적어서 다뤄도 되지만 저는 g(x+) x g(x+2)의 극한식에서 처리했습니다 (두 관점이 정확히 같습니다)
h(x)의 좌극한값을 파악할때는 x값을 정의하는것이 뒤의 우극한을 보내는 것 보다 우선입니다 x를 1보다 작은 값, 좌극한 값으로 이미 정의되어있으니 뒤의 우극한이 붙어있어도 1의 왼쪽의 값을 보는것이 맞습니다.
즉 사진에 첨부된 것 처럼 g((1-)+)의 이중 극한 형태는 결국
g(1-)로 볼 수 있으니 결국 f(1-)와 같습니다 이때 f는 다항함수라는 조건이 있므로 f(1-) =f(1)과 같게 볼 수 있고 이 경우가 흔히 상쇄의 케이스로 말해지는 것 같습니다 이 경우 f(1)=1임을 확정할 수 없으므로 ㄴ 보기는 모순입니다
풀이에 오류가 있다 생각하시는 분은 댓글 부탁드립니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이신혁 파이널 필기노트에서 수능 다 나왔다는데 맞나요??
-
한 번 사볼까 6
-
연대질문받음 48
1학년따리라 복전은 모름.. 그래도 송도는 빠삭함
-
시대 재종 질문 2
94 98 1 99 100 인데 높반 가능한가요??(언미물지) 그리고 높반이면...
-
술 못먹고 술먹으면 울어 속상해 ㅠ 할줄아든게 없어
-
두각 일요일 오후 201호 반인데 나만 분위기 개 답답하냐.오늘 션티 쌤이 어케든...
-
여러분들 개인한테 하고 싶었던 말 한마디씩 해드릴게요 점 찍고 튀어봐요! 。◕‿◕。
-
여자라고 할때요
-
생명 n제 5
생명 n제 ㅊㅊ좀
-
ㅆㅂ차은우 성대는 알았는데 나캠든?이사람은 성솦이네 2
3특인가 어케한거임? 아이돌하면서
-
정상적인 글 쓰다가 갑자기 예수왜 안믿냐 이러노
-
후회는없다..
-
전 솔직히 안 그리움 학창시절이 초중고 내내 워낙 암울한 편이었어서... 근데 이...
-
나는 비록 여친이 없지만! 나는 비록 친구도 없지만! 나는 비록 사회성이 없지만!...
-
탐구는 나발이고 0
지금 수학이 개둏댛다는 것을 깨달음 시바ㅏㅏㅏㅏㅏㅏㅏㅏㅏ
-
평가원하고
-
연대는 붙었고 서울대는 붙을거 같아요 서울대가면 무조건 복전할 예정입니다 (아마도...
-
특수할 때로 찍는 것 24
이건 걍 지녀서 나쁠게 없다 도 아니고 걍 지녀야만 하는 태도 라고 생각함 다만...
-
올해의 목표는 0
위버멘쉬가 되는것이다 잘 봐라 코리안 니체가 될것이다 으하하
-
이번에 이뤄 보겠습니다. (살짝 일기장이라고 생각 하면 편합니다..)
-
다들 잘자요~ 4
내일 헬스하고 알바가야해서 자야됨 굿나잇~
-
이유가 뭔가요?
-
이제 고등학생 올라갑니당. 국어 공부 자체를 학원으로 계속 하고 있는데요, 국어에...
-
수 1 2 어느정도 완성한후 미적분 들어가는게 맞나요?
-
예를 들면 생2 생윤 쌉어먹을 수 있는 과목이면 이걸로 메디컬 가능?
-
고대 교과 0
추합 1명도 안돌까요
-
안녕하세요. 고3 수험생들은 이제 수험 공부 시작하시느냐 바쁘시고 엔수생분들은...
-
평소에 누나도 그렇고 명절에 친척 형 누나들도 그렇고 다들 전문대에 간 사람들인데...
-
사문<---이친구 변별력이 어케 생기는 거임 ㄹㅇ 15
지2>지1>생1>물1>화1>>>물2중 물2보다도 개념양 적어 그럼 물2처럼 문제가...
-
개강추
-
찝찝하게시리.
-
너네라면 어디갈래
-
잘그렸죠 6
반박 못받음
-
웹소설은 안되나 ㄹㅇ 웹툰 끊고 웹소설 볼까걍
-
과외생이 어제 생기부오늘까지 다써야된다고 도와달라해서 5시간쓰고 자율,진로 생기부...
-
수학 자작 문제 만드는 분 보면 멋지시던데 그런 분들은 자작문제 어떻게 만드시는건가요?
-
지2는 어떰요? 10
공부해본 사람 후기좀
-
서울대 0
40분뒤면 D-10... 후
-
담당자 퇴근했으려나 어디에 신고해야될지 감이안옴
-
2025 수능만 인정되나요?? 학교 다니다 보려고하는데 2025만 되는거같지 왜,,
-
수면제 한 알의 여유 14
자고일어나면 명절 끝나있으면 좋겠네
-
국어가 뽑기라는 사실을 6평쯤에 깨닫고 빠르게 유기함 7
최소한만하고 수탐에 몰빵 영어도 깔짝 성공적 ㅎㅎ
-
1시간 째 이모양.. 안 쓰고 있는데..
-
(가) 과조건 아닌가 시픈데
-
경제가 없잖아
-
시대 재종 접수할 때 성적표 이런 형식으로 올렸는데 문제가 되나요?? 성적표 좀 잘리게 올려서,,,
-
스킬에 집착하는 경향이 있음 근데 실력이 늘수록 스킬에 대한 의존도가 떨어지고 결국...
-
하루하루 뿌듯하고 알차게 사는 기쁨? 행복? 이게 너무 좋음을 최근에 느낌..결과도...
-
어쩌다 저리 변해버리신건지.. 진짜로 신시장 개척하려고 떠난건가
아니요 정확히는 그 개념자체가 틀린거에요
이 문제푸는게 중요하기보단
그래서 다른 문제 나오면 틀릴수있어요
본문에 나온 부분 중 개념 오류는 없다고 생각하는데 어느 부분이 틀렸다고 생각하시나요??
위에서 쓰신 풀이는 아무 문제도 없어요
문제는 “g((1-)+)” (=lim (x->1-) lim (t->x+) g(t)) = g(1)이 다항함수가 아닌 케이스에서 일반적으로 성립하지는 않는다는 거죠
극단적으로, g(x) = 2(x-1) sin(1/(x-1)) (x<1, x는 무리수), (x-1) sin (1/(x-1)) (x<1, x는 유리수), 0 (x>=1)에 본문의 논리를 적용하려 한다면, g((1-)+) = lim (x->1-) g(x)조차 성립하지 않아요(첫 번째 극한은 정의되지 않지만, 두 번째 극한은 정의됨)
극한상쇄 풀이가 욕먹는 건 마치 항상 성립하는 내용처럼 말해서 그런 거에요
예를 들어 방정식 dy/dx = 1, y(0)=0을 y에 대해서 풀 때, 위아래의 d를 ‘약분‘해서 y/x=1, y=x와 같이 얻는다면 답은 맞고 풀이도 ‘미분계수=기울기‘라는 점에 집중하면 어느정도 정당화가 가능하지만, dy/dx = x같은 거에서는 성립하지 않으니까 바람직한 풀이는 아니겠죠
저는 2024 6월 미적분 28번과 같은 상황이라 생각하는데요 그 문제 역시 특정 풀이법 (f(x)를 구하는 것 등)이 문제 조건이 조금만 바뀌었어도 바람직한 풀이가 아니라는 논란이 있었죠
고등 수학과정에서 출제진들이 바라던 풀이는 딱 본문정도라고 저는 생각합니다
풀이는 문제에서 주어진 조건 상황하에서 성립하면 문제가 없는거지 굳이 문제에서 나오지 않은 상황을 생각하여 문제삼는게 필요가 없다는게 제 입장입니다.
조금 더 예시를 들어보면
당장 우리가 도함수의 극한의 존재여부로 함수 f(x)의 미분가능성을 따지는게 (연속임이 전제 되었을 경우)
수학 2 문제에서는 전혀 잘못된 것이 아니잖아요?
그런데 우리가 굳이 xsin(1/x)과 같은 무한 진동함수의 반례를 생각하면서 도함수의 극한을 쓰는게 옳지 않다!
라고 하지는 않습니다
실제로 님이 문제삼으시는 문제의 형태가 나왔다면 상쇄라는 해당 풀이는 애초에 나오지 않았다는게 제 입장입니다
저건 아예 글의 기본적 가정조차 성립하지 않는 극단적인 케이스로 잡은 거고, 그냥 g(x)=x (x<1), g(x)=0 (x>=1)만 들고 와도 g((1-)+)=g(1)이 일반적으로 성립하지 않는 건 알 수 있어요
진동 발산의 케이스는 g((1-)+)=g(1-)조차 성립하지 않는 걸 보여주려고 제시한 거에요
그 상황은 다른 상황을 제시하셨으니까요
상쇄가 가능했던 "이유"는 수능 14번 문제의 경우에는
f(x)가 다항함수라 좌극한 값이 곧 함숫값으로 확정이 되성 가능했던 거죠
저 상황에서는 잡으신 함수에 우극한을 취해봤자 그대로인 함수가 되는거니 당연히 g((1-)+)는 함숫값과 같지 않는거니 저런 상황이었다면 애초에 상쇄 풀이가 나오지 않았다는게 제 생각입니다
앞에서 말했던 거랑도 겹치는데, “현우진은 극한상쇄, 즉 g((1-)+)=g(1)과 같은 식이 항상 성립한다고 주장한 게 아니라, 그 문제의 상황에서만 성립한다고 말한 거다“라고 밀고 나간다면, 해설에서 답이 틀린 것도 아니니까 ‘해설에 오류가 없다‘고 말할 수는 있어요
문제는, 글쓴이님과 다르게(그리고 현우진 강사님의 의도와는 별개로) 대부분의 학생들은 저 극한상쇄를 항상, 또는 최소한 문제의 상황보다 훨신 넓은 범주에서 성립하는 걸로 이해했다는 거죠. 그래서 오개념 논란이 생긴 거고요.
수학은 객관성의 과목이지만, 결국 자연어에는 애매함이 있을 수밖에 없어요. 하지만 현우진 강사님의 말을 객관적으로 해석해서 해당 풀이가 어떤 의미였는지를 알 수는 없어도, 아직도 231114의 수분감 해설을 듣고 오개념을 가진 채 질문하는 학생들이 있는 걸 보면 바람직하지 못한 해설이라고는 할 수 있을 것 같네요.