Whitehead Torsion
Motivation: "그들의 대화" 에서 최근에 나오는 핵심 용어들 중 하나가 Whitehead torsion이라는 것인데, 이러한 것을 고려하는 이유에 대해서 먼저 설명하기로. 모든 것의 기원은 소위 "cobordism theory"에 기반을 함: Let $M$ and $N$ be smooth closed manifolds of dimension $n$. An \textit{$h$-cobordism} from $M$ to $N$ is a compact smooth manifold $B$ of dimension $(n+1)$ with boundary $\partial B \cong M\coprod N$ having the property that the inclusion maps from $M$ and $N$ to $B$ are homotopy equivalences. If $n\geq 5$ and the manifold $M$ is simply connected, then the Smale's $h$-cobordism theorem says that $B$ is diffeomorphic to a product $M\times [0,1]$ (and, in particular, $M$ is diffeomorphic to $N$).
다시 말해서, cobordism은 두 다양체 M,N을 자연스럽게 interpolate하는 것을 말함. 여기서 $h$는 homotopy를 말하고, 그 이유는 up to homotopy로 interpolate을 했기 때문. 5차원 이상에서는 이것이 어떤 면에서 ``trivial'' 하다는 것을 말함. Smale이 이 정리를 이용해서 5차원 이상에서의 Poincare Conjecture를 풀었음 (예에에전에 한번 이거 관련 글 썼던 것 같음).
이러한 좋은 이유에 의해서 cobordism theory를 not simply connected인 경우에는 어떻게 사용할 수 있을까 사람들이 고심을 하고, 그렇게 나온 것이 s-cobordism theory임. 이것을 좀 더 자세히 설명하기 위해서는 몇몇 정의들이 필요함:
Definition. Let $X$ be a finite simplicial complex. Suppose that there is a simplex $\sigma\subset X$ containing a face $\sigma_0\subset\sigma$ such that $\sigma$ is not contained in any larger simplex of $X$, and $\sigma_0$ is not contained in any larger simplex other than $\sigma$. Let $Y\subset X$ be the subcomplex obtained by removing the interiors of $\sigma$ and $\sigma_0$. Then the inclusion $\iota:Y\hookrightarrow X$ is a homotopy equivalence. In this situation, we will say that $\iota$ is an \textit{elementary expansion}. Note that $Y$ is a retract of $X$; a retraction $X$ onto $Y$ will be called the \textit{elementary collapse}.
Definition. Let $f:Y\to X$ be a map between finite simplicial complexes. We will say that $f$ is a \textit{simple homotopy equivalence} if it is homotopic to a finite composition of elementary expansions and elementary collapses.
모든 compact smooth manifold는 PL 이기 때문에 finite simplicial complex structure를 갖게 됨. 따라서, smooth manifold의 경우에는 simple homotopy equivalence라는 것을 이야기할 수 있음.
s-cobordism theorem. Let $B$ be an $h$-cobordism theorem between smooth manifolds $M$ and $N$ of dimension $\geq 5$. Then $B$ is diffeomorphic to a product $M\times[0,1]$ if and only if the inclusion map $M\hookrightarrow B$ is a simple homotopy equivalence.
이제 이 s-cobordism theorem을 적용하기 위해서는 언제 homotopy equivalence of smooth manifolds $f:X\to Y$가 simple homotopy equivalence인지 알아내는 것. 이걸 Whitehead가 해결했는데, 각각의 homotopy equivalence $f:X\to Y$에 대해서, 어떤 algebraic invariant $\tau(f)$ called the \textit{Whitehead torsion} of $f$ 라고 하고, 이 torsion은 \textit{Whitehead group} of $X$라고 불리는 특정 abelian group $\mathrm{Wh}(X)$에 존재함. 이 torsion이 정확히 simple homotopy equivalence의 obtruction임. 다시 말해서, $\tau(f)$ vanishes if and only if $f$ is a simple homotopy equivalence.
이제 이 Whitehead torsion이 구체적으로 무엇인지 알아보기로. 먼저 앞에서 정의한 simple homotopy equivalence의 정의를 조금 더 구체적으로 적어봄.
Construction 1. Let $D^n$ denote the closed unit ball of dimension $n$ and let $S^{n-1} = \partial D^n$ denote its boundary. We will regard $S^{n-1}$ as decomposed into hemispheres $S^{n-1}_-$ and $S^{n-1}_+$ which meet along the ``equator'' $S^{n-2} = S^{n-1}_-\cap S^{n-1}_+$.
Let $Y$ be a CW complex equipped with a map $f:(S^{n-1}_-,S^{n-2})\to (Y^{n-1},Y^{n-2})$. Then the pushout $Y\coprod_{S^{n-1}_-}D^n$ has the structure of a CW complex which is obtained from $Y$ by adding two more cells: an $(n-1)$-cell given by the image of the interior of $S^{n-1}_+$ (attached via the map $f|_{S^{n-2}}:S^{n-2}\to Y^{n-2}$) and an $n$-cell given by the image of the interior of $D^n$ attached via the map
$$S^{n-1} = S^{n-1}_-\coprod_{S^{n-2}}S^{n-1}_+\to Y^{n-1}\coprod_{S^{n-2}}S^{n-1}_+.$$
In this case, we will refer to the CW complex $Y\coprod_{S^{n-1}_-}D^n$ as an \textit{elementary expension} of $Y$, and to the inclusion map $Y\hookrightarrow Y\coprod_{S^{n-1}_-}D^n$ as an \textit{elementary expansion}.
The hemisphere $S^{n-1}_-\subset D^n$ is a (deformation) retract of $D^n$. Composition with any retraction induces a (celluler) $c:Y\coprod_{S^{n-1}_-}D^n\to Y$, which we will refer to as an \textit{elementary collapse}. Note that the homotopy class of $c$ does not depend on the choice of retraction $D^n\to S^{n-1}_-$.
Definition 2. Let $f:X\to Y$ be a map of CW complexes. We will say that $f$ is a \textit{simple homotopy equivalence} if it is homotopic to a finite composition
$$X = X_0\xrightarrow{f_1}X_1\xrightarrow{f_2}X_2\to\cdots\xrightarrow{f_n}X_n = Y,$$
where each $f_i$ is either an elementary expansion or an elementary collapse.
We say that two finite CW complexes are \textit{simple homotopy equivalent} if there exists a simple homotopy equivalence between them.
Example. Let $X$ and $Y$ be finite CW complexes and let $f:X\to Y$ be a continuous map. We let $M(f) = (X\times[0,1])\coprod_{X\times\{1\}}Y$ denote the mapping cylinder of $f$. If $f$ is a celluler map, then we can regard $M(f)$ as a finite CW complex (taking the cells of $M(f)$ to be the cells of $Y$ together with cells of the form $e\times\{0\}$ and $e\times(0,1)$, where $e$ is a cell of $X$). The inclusion $Y\hookrightarrow M(f)$ is always a simple homotopy equivalence: in fact, it can be obtained by a finite sequence of elementary expansions which simultaneously add pairs of cells $e\times\{0\}$ and $e\times(0,1)$ (where we add cells in order of increasing dimension).
Note that the map $f$ is homotopic to a composition
$$X\simeq X\times\{0\}\xrightarrow{\iota}M(f)\xrightarrow{r}Y,$$
where $r$ is the canonical retraction from $M(f)$ onto $Y$ (which can be obtained by composing a finite sequence elementary collapses). It follows that $f$ is a simple homotopy equivalence if and only if $\iota$ is a simple homotopy equivalence. Consequently, when we are studying the question of whether or not some map $f$ is a simple homotopy equivalence, there is no real loss of generality in assuming that $f$ is the inclusion of a subcomplex.
Rmk. Celluler approximation theorem says that any continuous map between CW complexes can be homotoped to be a celluler map. In particular, the above example holds for general continuous map $f$.
Simple homotopy equivalence는 homotopy equivalence인 것은 눈으로 쉽게 확인할 수 있다. s-cobordism theorem을 적용하기 위해서, 우리는 그 역이 필요하다.
Question. Let $f:X\to Y$ be a homotopy equivalence between finite CW complexes. Is $f$ a simple homotopy equivalence? If not, how can we tell?
앞서 말했듯이, 이 질문에 대한 대답은 정확히 Whitehead torsion. 이걸 만들기 위해서 먼저 몇몇 정의들이 필요함. 지금까지는 상당히 자명한 것들만 나왔는데 지금부터는 약간 익숙치 않은 것들이 등장하기 시작함.
Definition. Let $R$ be a ring (not necessarily commutative). For each integer $n\geq 0$, we let $\mathrm{GL}_n(R)$ denote the group of automorphisms of $R^n$ as a right $R$-module. Every automorphism $\alpha$ of $R^n$ extends to an automorphism $\alpha\oplus 1_R$ of $R^{n+1}$; this construction yields inclusions
$$\mathrm{GL}_1(R)\hookrightarrow\mathrm{GL}_2(R)\hookrightarrow\mathrm{GL}_3(R)\hookrightarrow\cdots.$$
We let $\mathrm{GL}_\infty(R)$ denote the direct limit of this sequence, and we define $K_1(R)$ to be the abelianization of $\mathrm{GL}_{\infty}(R)$.
Remark. 자 이 construction이 뭔가 natural 하면서도, 한편으로는 좀 어색한데, 만약 $R$이 commutative ring이라면, determinant function
$$\det:\mathrm{GL}_n(R)\to R^\times$$
이 group homomorphism을 줌. 자명히 det은 위의 direct system과 compatible 하기 때문에, direct limit으로 pass가 가능하고, $\det:K_1(R)\to R^\times$ 라는 group homomorphism을 induce함. 만약 $R$이 field 이거나 $\Bbb Z$ 라면, 이 det은 isomorphism이라는 것을 알 수 있음. (하지만 우리의 경우에 $R$은 group ring $\Bbb ZG$라 이 경우는 아님.)
Let $R$ be a ring. A \textit{based chain complex over $R$} is a bounded chain complex of $R$-modules
$$\cdots F_n\xrightarrow{d}F_{n-1}\xrightarrow{d}F_{n-2}\to\cdots,$$
together with a choice of unordered basis for each $F_m$ (so that each $F_m$ is a free $R$-module). In this case, we let $\chi(F_\ast)$ denote the sum $\sum(-1)^mr_m$, where $r_m$ denotes the cardinality of the (chosen) basis of $F_m$. We will refer to $\chi(F_\ast)$ as the \textit{Euler characteristic} of $(F_\ast,d)$.
Remark. If $R$ is a nonzero commutative ring, then the Euler characteristic $\chi(F_\ast)$ is independent of the choice of basis of the modules $F_\ast$. For a general noncommutative ring $R$, this need not be the case.
Let $(F_\ast,d)$ be a based chain complex over $R$ which is \textit{acyclic}, i.e., the homology of $(F_\ast,d)$ vanishes. Since each $F_m$ is a free $R$-module, it then follows that the identity map $1:F_\ast\to F_\ast$ is chain homotopic to zero. We let $F_{\text{even}}:=\bigoplus_n F_{2n}$ and $F_{\text{odd}}:=\bigoplus_{n}F_{2n+1}$.
Lemma. In the above setting, the map $d+h:F_{\text{even}}\to F_{\text{odd}}$ is an isomorphism. $\square$
The specification of a basis for each $F_m$ determines isomorphisms
$$F_{\text{even}}\simeq R^a,\quad F_{\text{odd}}\simeq R^b$$
for some integers $a,b\geq 0$, which are well-defined up to the action of permutation matrices.
Definition. Let $\tilde{K}_1(R)$ denote the quotient of $K_1(R)$ by the subgroup $\langle \pm 1\rangle$. If $(F_\ast,d)$ is an acyclic based complex with $\chi(F_\ast) = 0$, we define the \textit{torsion} of $(F_\ast,d)$ to be the image of $d+h\in\mathrm{GL}_a(R)$ under the map $\mathrm{GL}_a(R)\to\mathrm{GL}_\infty(R)\to\tilde{K}_1(R)$. It can be shown that this definition does not depend on the ordering of the basis elements of $F_\ast$. We will denote the torsion of $(F_\ast,d)$ by $\tau(F_\ast)$.
Lemma. In the above definition, the torsion $\tau(F_\ast)$ is well-defined, i.e., does not depend on the choice of nulhomotopy $h$. $\square$
Definition. Let $f:X_\ast\to Y_\ast$ be a map of chain complexes over a ring $R$. The \textit{mapping cone of $f$} is defined to be the chain complex
$$C(f)_\ast = X_{\ast -1}\oplus Y_\ast$$
with differential $d(x,y) = (-dx,f(x)+dy)$. Note that if $X_\ast$ and $Y_\ast$ are based complexes, then we can regard $C(f)_\ast$ as a based complex (where we fix some convention for how our bases should be ordered).
Suppose
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
대학원서 기다릴때만큼 긴장된다;;
-
레어삿다 2
저 앞에 두 개만 없으면 완벽한데
-
그 상태로 꿈꿨음 막 귀에서 계속 인강 소리가 들리니까 어떻게든 소리를 안나게...
-
수도권도 전기싸게 쓸라면 본인들 지역에 기피시설 지어야지
-
칼럼싸개로 전직을 13
-
진짜 개씨발 하아………
-
[칼럼예고글+정보글] 단타 필승 전략( 단, 수익률은 매우 낮음) 8
✅ 볼린저 밴드 vs RSI 상황별 행동강령 ? 1. RSI 과매도(매수 신호)인데...
-
오늘 할 일 4
공벡 자료 보기 <<< 한 5페이지만에 벌써 유익함 베르테르 많이 풀기
-
살 레어가 업네 0
ㄲㅂ
-
죄석 높이 조절 어케해야할지모르겠음 저는 보여야 좋은데 친구는 보이면 안 된대서;;
-
동국대2개 건국대1개 썼는데.. ㅎㅎㅎㅎㅋㅋㅋㅋㅋ ㅠㅠㅠㅜ 매우슬픕니다.......
-
[속보] 트럼프 “EU 제품에도 관세 곧 부과 계획” 2
도널드 트럼프 미국 대통령이 캐나다와 멕시코에 이어 유럽연합(EU)에도 관세 부과를...
-
안철수를 과거 조롱했던 것도 있긴 하지만, 회의적으로 바라보게 된 계기가 작년...
-
오케이 1
먹자
-
검사할때 카운터 보거계셨던ㅊ 간호사분 너무예쁘셔서 갖고계신 인스타 ㄱ케정중에...
-
커피 한잔은 계속 마셔야겠다 죽겠네
-
걍 라멘 먹을까 2
속이 곱창나더라도 너무참기힘든데 걍 삼일 더 장염걸리고 말기
-
레어구매완료. 5
2년전쯤인가 만들었던 레어임뇨 돌고돌아 내게 다시왔다
-
과기대 발표? 1
몇시쯤 하나요??
-
원하는 이상형과 5년 같이 살기
-
많이 푸는거임? 기출은 아니고 쎈
-
도로주행은 대체 왜떨어진건지 아직도 이해가 안되고 학교는 좀 늦게 합격될거라...
-
조기말구 정규로!
-
주식숨기기 on 7
오늘부터 내 주식은 풀이다
-
현역이고 쎈발점 끝내갑니다. 스블 공통은 할만했는데 미적은 벽 느껴집니다,, 스블...
-
어그로끄는 뻘글입니다
-
집들이 선물 1
신선한 집들이 선물 추천해주세욤 (휴지제외)
-
개잼슴
-
그냥 왕난이가 주인공 했으면 좋겠다..
-
작년보다 모집인원 절반나면 추합 인원도 비슷하게 절반남?
-
치킨 200마리값까지 가겠는데
-
이게 맞음? 엔비 벌써 9퍼빠짐 본장오면 어케되려나
-
으 넘무 어렵다
-
확실히 성격 좋아짐 수능이 사람 인격을 좀 일그러뜨리는 듯
-
아아ㅏ 준비하기 넘무 귀찮은거 아니냐
-
시드 5천 넘어가면 좀 살떨릴듯
-
도로주행 오늘 2
한번에 통과 해야한다 재시험 안된다
-
저점 노리고 하따하는거보다는 승률 높을듯ㅋㅋ
-
수강현황에 100 떠있으면 된거겠죠? 수학 같은거 아는 문제는 스킵하면서 봤는데...
-
누나들이 애교 부리는게 좀 더 귀엽긴 함
-
관세 120000% 때려서 그냥 다 같이 죽어봅시다 난 이제 아무 것도 잃을 게 없으니까
-
아직 공포 시작도 안했다 ㅋㅋㅋㅋ
-
개드립도 이런 개드립이면 천재이긴 하죠.
-
일단 환전햇음. 6
암만봐도 여기서 환율이 더오르면 우리나라 망함 한은이 금리 올려서 조정하겟지뭐
-
으흐흐 4
체크.
-
보통 지가 뱉는 말 팩트도 아님 ㅇㅇ
-
사만다
-
안아줘요 2
핥아줭ㅎ
-
내신 선택과목 4
물리 화학 생윤 나쁜가요…? 좀 이상하긴한디ㅋㅋㅋㅋ
세줄요약좀
1. 멋진 대화를 하고 있는 사람들 대화에 끼고 싶다
2. 대화에 끼려면 그 사람들이 무슨 말을 하는지 이해해야 한다
3. 따라서 그들의 대화 중에 나오는 용어들을 먼저 알아볼까 고민중이다