[박수칠] 미분계수와 함수 극한의 관계에 대하여
![](https://s3.orbi.kr/data/file/cheditor4/1601/NySttD1Stc5ZM91OYG.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/QeGVxng4ghnQPJuhban.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/Yedk4r1qsQIkDqmViQRpkgTRL.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/YqaFQOpY3AlM6RSOMHO24uyY.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/sekEaEYqNkXwNvC22SShWrPBM8XWriQh.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/RWiNaHQSvVXGEXD3q72rRxCc.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/2PiVzmQrRmFkqlWkMdPV66kyXzQHOX7.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/LxUSKxEdxQkV7eDZCslKbpedT2tB.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/CUPnTvEQ3jUPt9Z7VQtOnwZWZNXCXf6X.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/EzF7MAWIHAl6XvN.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/LHwZ6M3JDbBqCDw1LwNg7tT1vzi.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/962nkNOoavdC2xv8.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/VsCqtfCLadWSfMSmkWJZHW.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/VsCqtfCLadWSfMSmkWJZHW.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/E9Svpwt5z7xHskfuFOmjOkj6o.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/jnN5zXGcndQHME7f.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/49UNcyZLf5v5Ixu5bnNf9sFI1qZm.jpg)
![](https://s3.orbi.kr/data/file/cheditor4/1601/zY8alLcS6kj862NWy6EdHyo.jpg)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
고양이진공청소기 1
위이이잉
-
소주 2병씩 먹고 같이 담배 피우고 자기
-
레어 확인 8
-
@슈냥소환 4
-
이미많이올라서 잘모르겠다
-
배고파요 0
밥줘
-
주변에 모솔 있음? 13
난 주변에 사람 자체가 없음
-
내년에는 안하겠지…?ㅠ
-
잘자라옵붕이들 3
그대들이무슨고민을하고있든 모두잘될것이니 일단자자
-
털 때문에 키울 엄두가 안 남
-
레어화긴 11
나경??
-
그런 거구나
-
뭐야 9
여장 무서워요?
-
턴해집회나 가라
-
고려대 보건정책관리학부 기균 예비 1번인 분 등록하시나요? 노예비라 가늠이 안 돼서...
-
여러분 꿈떡마쇼
-
진짜로 킬러 지문 낼 수 있겠다는 생각이.. 변별하는데 이 방법 말고 더 좋은 게 없음
-
안자냐ㅉ 0
에휴
-
근데 그게 제 정체성을 형성한 듯
-
수학은배성민 2
그치? 우리정파야? 정의가 제일 중요해? 아 근데 0/0꼴이네? 뭐하러 이렇게 해 로피탈쓰자?
-
이번 수능 공통 15,20,21틀렸고 확통은 ㅎㅎ…. 15는 훑기만하고 시간...
-
하..
-
25처럼 엔수생 탈출 시켜달라는 거다.. 24마냥 그러지말고
-
근데 자기싫은데 0
왜자야함 내일휴일인데
-
다잘풀줄안다면만점이겠지
-
재밌을 것 같아 여기 이상하고 웃긴 애들이 많아
-
내일부터는 진짜 헬스 나갈게요…
-
반응하며자러가기 1
스키마는배경지식이라여기며자러가기 강기분은사후적독해라여기며자러가기...
-
아돈닏 아돈닏 아돈닏 어떤 골든 티켓도
-
난 그냥 수학 문제 조건보면 개같이 미분하고 대입하고 아무 생각없이 달려드는...
-
세명대 한의대(제천)(예비3) 이랑 고려대 전기전자(최초합) 중에서 고민중입니다 ....
-
ㅈㄱㄴ
-
상방이 막힌 거 같음 근데 다들 필요충분조건으로 바꿔서 풀지 않나 아 모르겠다
-
앞으로 본격적으로 국어 칼럼을 쓰려고 하는데, 제 글에 신뢰도가 생기려면 제 소개가...
-
몇 수 앞을 내다본겁니까..
-
깨달음좀줄수있나 범바오
-
아ㅆ1발악몽
-
흐음
-
힘겨운 수험생활 5
끝까지 함께할 이가 옆에 있다는 것은 크나큰 힘이 되니까
-
제가 잘 몰라서..
-
오우
-
강기분만 들으면 12만원에 언매 미적 탐구까지 다 커버가능한데
-
소통해요~ 9
-
스스로도 속이는 삶
-
영상을 못 올림 방금 마르세유턴 지렸는데
-
다이어트 계획인데 ㅇㄸ 12
운동-> 지금 발 다쳐서 코어운동 하루 30분 하고 있고, 2주 뒤부터 일주일 3번...
-
수학잘하고싶다 3
진짜 수학만 잘하면 되는데
-
Why you clicked this?
-
백분위로 설대 자전이랑 고대 반도체 커트라인 아시는 분 있나요?
-
옵삐삐들아 행복해라 14
행복은 너희가 찾는 거야 하지만 행복하라는 말 한 마디는 내가 해줄 수 있어 그러니...
좋은글입니다!
감사합니다! ^^
소위 말하는 '야메'같아 보이는 나만의 공식도 논술에서 제대로 증명을 해내면 사용해도 되겠지요?
글쎄요... 채점 기준에 대해 잘 모르지만
교과 과정에 충실하게 작성한 것이
모범 답안이라 생각합니다.
특히 논술의 경우에는
문제 해결에 필요한 교과 과정 내용을 제시문의 형태로 주기 때문에
그 테두리 내에서 해결을 해야 좋은 점수를 받을 수 있을 겁니다.
갓수칠
언제 들어도 좋은 말이네요~ ^^
이걸 적절히 연습할 수 있는 문제가 예전 사관학교 ㄱㄴㄷ문제에 있죠
아 그런가요?
요즘 출제 경향에선 살짝 벗어난 감이 있지만
개념 이해에 참 좋은 유형이죠~
뭐야
미정계수구하는거분명히배웠는데왜처음부터뭔소린지하나도모르겠지???
ㅠㅠ
미분계수의 정의 바로 다음에 나오는
함수의 극한 유형을 복습하면 됩니다~ ^^
사실 많은 사람들이 아무 관계가 없는 내용인데 미분가능성을 전제로 두고서 막 미분하는 경향이 있는데 그런 사람에게 보여주면 아주 좋은 글인것같습니다!
감사합니다.
개념에 대한 이해가 부족한 상태에서 문제를 풀 때 위험한 것이
'이렇게 해서 답을 맞췄으니 다음에도 똑같이 하면 되겠지'
라고 생각하는 걸 겁니다.
답을 맞췄더라도 미심쩍은 부분이 있다면
이유를 꼭 확인해야 되겠죠.
앞으로도 개념을 이해하는데 도움이 될 만한 글
종종 올리겠습니다.
딱저네요..미분가능성 전제해서 막미분..
이관데 이런개념들부족하면 수1을다시보는게맞겠죠?
h가0으로갈때 h^2이 0+로가는건 왜그런건가요..
(실수)²≥0이기 때문이죠.
h→0이면 h²→0이고, h≠0이니까 h²>0입니다.
따라서 h²→0+가 됩니다.
함수 y=x²의 그래프를 그리고 x→0일 때 y값의 변화를 보면
0보다 크면서 0으로 다가가기 때문이기도 하구요.
그리고 본문의 내용들에 대한 이해가 부족하면 수학1을 다시 보기보다는
공부할 때 디테일 있게 하는 것이 중요할 것 같습니다.
개념 이해한 다음 다양한 유형을 풀 때 맞췄다고 그냥 넘어가지 말고,
해설을 한줄한줄 보면서 왜 이 방향으로 가는지 자꾸 따지는 거죠.
' f"(x)>0이면 f(x)가 아래로 볼록하다 ' 라고 외우지 말고
' f"(x)>0이면 f'(x)가 증가하고, f'(x)가 증가하면 접선 기울기가
점점 증가하는거니까 f(x)가 아래로 볼록하다 ' 라는 식으로
중간 과정을 집어 넣으면서 이해하는 것이 중요합니다.
갓수칠님이 마지막에 말하신방식대로 미2공부를 다 끝냈습니다
근데 개념이부족하다는 찝찝함과 불안감은 왜항상있는걸까요..?
미2정석을 꼼꼼히봐도 개념을확실히안다는 느낌이안오더라고요
예를들어 역함수문제를풀때 일대일대응이라는것에 꽂혀서풀다가 문제가안풀림을알고
10분고민뒤에 단조증가 단조감소의 특징을 기억해내고 문제에적용합니다
풀었는데도 찝찝하고.. 체크해놧다가 다시풀어야하나 생각도들고..
개념을 완벽하게 안다는 것을 제자신이 어떻게 알수있을까요?
답변해주시면 정말감사하겠습니다 ㅠㅠ
어떤 책으로 공부하든, 개념을 완벽하게 알 수는 없습니다.
중요한 것은 반복하면서 이해도를 끌어올리는 것이죠.
문제 풀 때도 마찬가집니다.
내가 이해한 것보다 높은 수준을 요구하는 문제도 있고,
'내가 잘못 이해했구나'라는 깨달음을 주는 문제도 있습니다.
이럴 때 필요한 것이 필기고 정리죠.
지금 이해했고, 풀 수 있다 하들 나중에도 그럴거라는 보장은 없습니다.
개념 공부하면서, 문제 풀면서 새롭게 깨달은 것이 있으면 꼭 기록해야죠.
그리고 완벽해야한다는 강박 관념보다는
빈 부분이 생기면 꼭 보충해야 한다는 강박 관념을 가져야 합니다.
수학은 '이 정도면 됐다'라 생각하는 순간 망하거든요.
개념 복습 안하고, 문제 덜 풀면 금방 감이 떨어집니다.
이 부분 개념 복습할때 항상 힘들었는데 자세한 설명 감사드립니다.
앞으로도 특정 개념/유형에 대한 해설을 종종 올릴 예정입니다.
많은 관심 부탁드립니다~ ^^
WOW 시원하네요 진짜 최고네요 미분계수의 정의에 따르면 저 풀이가 안되는데 저렇게 푼 풀이가 왜 있는지 엄청 궁금했었는데... 저것 때문에 잠이 안와서 늦은 시간까지 저 풀이에 대한 것만 엄청 찾았네요
정말 고맙습니다♡ 진정 수학 고수 이시네요
감사합니다! ^^