미적분1 자작문제
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
기분탓인가
-
해파리~ 지역을 지~키자~!
-
작년에 비해 국어수학 표점이 낮으니까 작년과 환산방식이 동일하다는 가정하에 표점...
-
갑자기 유튜브가 너무 재밌다
-
재밌었고 감사했습니다 ㅎㅎ 인증같은거 하지말걸 그랬네요
-
게시글 밀기
-
건대 vs 외대 4
건대 경영이랑 외대 자전 or 경제학과 어디 가는게 낫나요? 문과입니다
-
왜 나만 안돼 2
... 열심히 한 수시도 망하고 열심히 한 정시도 망했는데 그러면 내가 학점을 잘...
-
잔다 6
르크
-
이제 자야지 2
이제부터 오르비는 내 공부 기록용이다
-
한시간 전에 찍은건데 음 오랜만에타니좋네요
-
얼버기 2
그닥 잘 자진 못한듯? 30분 자다 깼다가 다시 3시간반정도 잔듯
-
선착순 10
-
이제 글 그만 쓰시고 주무세요 안그럼 궁금해서 제가 못잠
-
로고는 저의 순수창작물이며, AI를 사용하지 않았습니다. (갤럭시노트에서 아이디어...
-
훨씬 남자다워
-
벌써 댓글 400개 씀 ㅁㅊ
-
말해주셈
-
참많다고 생각했는데
-
배그하는사람 8
스팀배그 하는사람있음?
-
으흐흐.. 3
X발
-
종강을 바란다
-
제가 이정도 라인인데 컨설팅 의대 서연고같은 극상위권 분들만 받으시나요? 그리고...
-
엄청 길게 느껴졌는데
-
그래서 의무감에 뻘글과 뻘댓을 난사하는 것이 아닌 진정으로 재밌어서 자발적으로...
-
자다 깼어요
-
기차지나간당 8
부지런행
-
안믿겨지네뇨이
-
아무것도 모르는 상태에서 선본다면 누구랑 할거야?
-
오늘부터 잡담 안 적고 공부한 것들만 적어야 겠다 흐아아ㅏ앙
-
댓글 패턴 보면 ㄹㅇ ㄷㄷ ㅁㅊ ㄱㅁ ㅋㅋㅋㅋㅋ 그리고 오르비 이모티콘 여기서 계속 돌려막기함
-
나는 전공 지식이 아니라 사람이 필요하기에
-
외국어 대학이라는 정체성이 있어서 그런지 비슷한 급간 대학 뱃지보다 약간 지적인...
-
이 버튼을 누르면 당신이 지원한,지원할 대학의 올해입시 마지막 합격발표날자로 곧바로 이동합니다
-
나 왜 안 자1지 14
원래 딥슬립할 시간인데
-
당신은 2024년 10월 28일로 돌아가게됩니다 (시험답 기억x),로또같은거 기억x...
-
미친흉기 더럽게 아프네
-
당신은 2023년 11월 28일로 가게됩니다
-
그렇게밤이되엇져 4
-
사실 여자좋아함 뻥임
-
그때의 나로 갈수있다면
-
불면증?걸렸는데 4
ㄷ잡생각이 너무 많아서 졸린데도 맨날 4-5시에 자고..하루에 2시간밖에못잠.. 잠...
-
시간떼우기 너무좋은데 문제는 영상이 몇개 없어서 하루만에 다 봐버렸다는 거임
-
나는지금 6
뭐먹게
-
문제는 여건상 수능밖에 기회가 없다는 거임 수능에서 센츄를 따야 함 ㅠㅠ
-
수학황만 7
현우진 뉴런 수2 정적분 넓이 파트 인데요 제가 그린 함수 같은 상황에서는 점대칭...
21?
15?
둘다 아녜요..
ㅠㅠ
히익? 3차함수 아녜여?
맞아용
(0,0)에서 만나면서 y= -x랑 접하는거 아니에요?
(라) 조건을 보시면 (0, 0)을 지날 수 없어요..
라 조건이 x가 0보다 같거나 작을때 x값이 커질수록 (0,0)과 이은 기울기가 커진다 아니에요?
제가 알기론 이게 아마 기출에 있었던 것으로 기억을 하는데 (라) 조건은 조금 조작이 필요해요.. 그리고 (0, 0)을 지날 수가 없어용 x2=0 x1=-2 이런것만 대입해봐두요
라 조건에서 x2랑 x1으로 나누면 g(x2)/x2 > g(x1)/x1 아니에요?
네 맞아요 전 그걸 증가함수로 해석하길 바랬던건뎅.. 기울기로 봐도 무방하긴 하겠군요 지금 보니.. 그렇다고 (0, 0)을 지날거란 보장은 없지만용
증가 함수라구여? 감소함수도 되는데요? 오히려 증가함수가 안되는거같은데
g(x)/x가 (x<0)에서 증가함수인걸용..
아 통채로 말씀하신거구나 전 당연히 g(x)만 이야기하시는줄 알았죠
죄송합니다 제가 설명이 모잘랐네요 ㅠㅠ
제가 수학을 못해서 자세힌 모르지만 x2=0 일때랑 x2=/=0 일때랑 자료해석을 다르게 해야하는거같은데 맞아요?
그래야 0,0 못지나가는거랑 감소함수인게 같이 나오는거같은데
x2=/=0이 무슨 의미인질 모르겠네요 ㅠㅠ..
그럼 답 75에요?
X2가 0이 아닐때랑 0일때랑 (라) 조건해석을 다르게 해야하지않나요? 라는 말이에요
그렇게 하고난다음에 마지막에 g(-1)=0 조건이랑 계수 음의 정수 조건으로 부정방정식 비슷하게 풀었는데 맞아요? (0,양수)지나면 (라)조건 위배되서 (0,음수)해서 풀었늗네
네 75 맞아용 x2가 0일때는 x1*x2로 못 나눠주니 대입해서 g(0)<0이라는 것만 밝혀주고 x2가 0이 아닐때는 x1*x2로 나눠서 생각해주는거에요 ㅎ
ㅇㅎ,, 제가 첨에 나눌때 조건파악을 좀잘못했네요 수알못 울고갑니다 광광,,
아니에요 잘하시는데요 ㅎㅎㅎ GOAT..
아녜요 진성 수알못입니다
ㅎㄷㄷ 그럴리가용
이과황님 이런식의 역기만은 옳지 않습니다
역기만이라뇨 ㅠ 전 그럴 능력이 없어용
거의 직감으로 g(x) 삼차함수로 놓고 푸니깐 쉽게 풀리긴 하는데
정석으로 풀려면 어떻게 도출해야 하나요?
g(x)가 4차함수인경우 2차함수인경우 3차함수인경우의 그래프 개형을 생각해서 풀도록 했어요 최고차항 계수도 그래서 줬구요
hx가 역함수 있다는 조건으로 개형추론 정도
f(x) = cx + b라 하자
f(x)의 역함수를 I(x)라 하자
I(x) = (1/c)x - (b/c) 이고
(가) 조건에 의하여
f(x) = cx + b = I(x) = (1/c)x - (b/c) 이므로
(1/c)x - (b/c) = cx + b 이고
c^2 = 1 이고 (b/c) = -b 이다
또한
(나) 와 (다) 조건에 의하여 g(x)는 이차 이상 사차 이하의 다항함수이다
또한
(라) 조건에 의하여 x2=0이라고 할때 g(x2) = g(0) < 0 이다
또한
함수 h(x)가 x=0에서 미분가능하므로
함수 h(x)는 x=0에서 연속이다
따라서
f(0) < 0이고
c=1일때 b=0이므로 f(0) < 0 이라는 조건이 성립할 수 없다
따라서 c= -1이고 b<0이다
따라서 h(x)가 실수 전체의 집합에서 미분가능하고 역함수가 존재하므로
h(x)는 실수 전체의 집합에서 감소해야 한다
따라서 g(x)가 최고차항이 음수인 이차 또는 사차 다항함수일 경우
x<0 인 어떤 실수 x에 대하여 g'(x)>0인 구간이 존재하므로
h(x)가 실수 전체의 집합에서 역함수를 가질 수 없다
따라서 g(x)는 삼차함수이고
g(x)= -x^3 + px^2 + qx + r이다
h(x)가 x=0에서 미분가능하므로
f'(0) = b = g'(0)이고
r=b이므로
g(x)= -x^3 + px^2 + qx + b이다
또한 g(-1) = 1+p-q+b=0이므로
g(x)= -x^3 + px^2 + qx + q - p - 1이고
g'(x) = -3x^2 + 2px + q이다
또한 g'(0) = f'(0) = -1이므로
g'(0)=q=-1이고
g(x)= -x^3 + px^2 - x - p - 2이다
또한
g(0)=-p-2<0이므로
p>-2이고 p는 음의 정수이므로 p=-1이다.
따라서 g(x) = -x^3 - x^2 - x - 1이고 f(x) = -x-1이다.
따라서
h(x)를 -1부터 1까지 적분한 값의 절댓값 = {(g(x)를 -1부터 0까지 적분한 값) + (f(x)를 0부터 1까지 적분한 값)}의 절댓값 = 25/12 = a
이므로
36a = 75
멋진 해설입니다!
자작문제 검색하다가 들어왔어요~
문제는 풀었는데 궁금한게 있어서요 (라) 조건은 g(0)의 부호를 알 수 있는것말고 다른 정보는 도출해낼 수 없나요? 예를들어 평균변화를 대소비교를통해 이계도함수의 부호를 알 수 있는것처럼요~혹시 문제 만드실때 (라)조건에서 다른 의도가 있나 해서 여쭤보아요!
(라)는 g(x)/x가 증가함수인걸 의도했습니다 ㅎ
그렇네요ㅎㅎ문제 너무 좋네요 앞으로 미적분 문제 시간되시면 또 만들어주세요~
ㅎㅎ.. 노력해보겠습니다..