왜 벡터의 크기를 제곱하면 내적이 나올까? & 이 점은 변곡점인가요?
20170429.pdf
많은 시도를 하고 있습니다. 반갑습니다 일반청의미입니다.
모르겠고. 그게 다 맞는지 모르겠고. 내가 어린지도 모르겠고
그냥 하는거죠 뭐. 뭐가 있겠습니까. 하지만 나는 내가 열심히 노력한단걸 알아요.
노력에 있어서는 저는 꽤 잘한 것 같습니다. 열심히 해볼게요.
이 칼럼은 이 글에 담긴 생각을 바탕으로 쓰게 되었습니다.
공부의 양은 어떻게 정할까? : http://orbi.kr/0008692499
공부의양은 생각의 양과 같고, 생각과 고민은 질문에서 나옵니다!
이렇게 쉽고 기본적인 내용이 어디에 도움이 될까요? : http://orbi.kr/00011592572
공신 방송 다녀온 후기 & 수학 칼럼 연재합니다. http://orbi.kr/00010768917
가장 쉬운 방식으로 개념을 이해해야해요 : http://orbi.kr/00010794675
이차방정식의 해법 해설 + 평행이동할때 왜 점은 +a인데 그래프는 -a일까? :
http://orbi.kr/00010789384
평행이동 해설 & 어떻게 곡선 위의 점의 접선은 한 점으로 정의될까? : http://orbi.kr/00010841663
곡선 위의 점의 접선 해설 & y=|x|는 왜 x=0에서 미분 불가능할까? : http://orbi.kr/00010980265
y=|x|는 왜 x=0에서 미분 불가능할까? & 유리화는 왜하는걸까? : http://orbi.kr/00011115763
유리화는 왜하는걸까? & 판별식이 음수일때 왜 이차방정식은 항상 0보다 클까? : http://orbi.kr/00011420287
판별식이 음수일때 왜 이차방정식은 항상 0보다 클까? & log a b 에서 a>0, a≠1이어야 할까?
http://orbi.kr/00011521076
log a b 에서 왜 a>0, a≠1이어야 할까? & 근과 계수의 관계를 어떻게 유도할까?:http://orbi.kr/00011588911
저번 칼럼은 이거였습니다!
근과 계수의 관계를 어떻게 유도할까?& 왜 벡터의 크기를 제곱하면 내적이 나올까? http://orbi.kr/00011613898
정답갑니다.
이 문제에 대한 풀이는 적지 않겠습니다. 하지만 어떻게 해야하는지는 알겠죠?
최대한 변하지 않도록 도형을 이용해 벡터를 나눠주시면 되겠죠!
이것의 근거는 벡터의 합의 정의와 내적의 정의입니다!
그 기본에 충실하면 반드시 아이디어가 나온답니다. 아니면 그 아이디어 전부 외워야겠죠!
한번 더 말합니다. 공부에는 기본이 제일 중요합니다. 기본으로 아이디어를 떠올리세요.
다음 질문 갑니다. 신-박할거임
언젠가는..! 올리겠지!! 다음에봐요!
제 칼럼은 제 이름을 명시하시고 쓰셔도 됩니다.
올린 pdf파일에 대해서는 제것입니다. 기억해주셔요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
취업만 생각하면 둘 중 어디가 더 나은가요? 반도체학과 갈 생각이었는데 주변에서...
-
가기 전까지 진학사 텔그 굳이 안 봐도 됨?
-
펑크까진 아니여도 중낮공도 잘 뚫리나요?
-
난 못생겼나보다 5
전에 ㅇㅈ 한번 했는데 ㄱㅇㅇ만 잔뜩 올라옴
-
아 개졸ㄹ 2
후
-
편의점알바 면접가야지 13
끼얏호
-
지역인재 의대정시 꽤 늘었는데 작년보다 추합이 많이돌까요? 1
모집인원이 늘면 보통 추합이 많이도나요?
-
집안 학벌 등등... 한쪽이 너무 꿀리면 같이 다니기가 너무 힘듦
-
대성 국어 0
대성 국어 송희진 어떤가요
-
2022학년도(브레턴우즈) 때도 성적표 나올 때 쯤부터 게시글들의 양식이...
-
재수해도될까요?…..
-
의사로서 가장 중요한 역량 - decision making 3
의사 의대생 본인들은 스스로 자각하지 못할수도 있지만 의사들은 자연스럽게 리더가 될...
-
현역 수능 망하고 재수할까합니다. 근데 재수하고싶은 이유가 그동안 살면서 성실함이나...
-
ㄷㄷ
-
안녕하세요 초간단 설문조사 참여하고 1만원 문상 받아가세요! 중고등학생 대상 우정,...
-
대표님 죄송합니다
-
과 단톡방 2
지금 나갈까 이래놓고 다떨어지는건 아니겠지 ㅋㅋ 물론 탈출은 할듯
-
기업이 말하는 커뮤니케이션이 뛰어난 사람이 뭔지 알겠다 1
답답스,,,,
-
마주치면 인사할게요잇땅
-
진학사 칸수가 대략 언제쯤이면 거의 근사치에 가까워지나요? 1
현재 상황은 낙지 칸수라는 게 결국 회사의 판단에 학생들이 휘둘리는 거 아닌가요?...
-
의대아니면 안간다 마인드로 의대 지를까 아니면 스카이라도 얻는다 마인드로 스카이로...
-
ㅇㅇ
-
한양대 합격생을 위한 노크선배 꿀팁 [한양대25] [한대긱사101] 0
대학커뮤니티 노크에서 선발한 한양대 선배가 오르비에 있는 예비 한양대학생, 한양대...
-
성균관대 합격생을 위한 노크선배 꿀팁 [성대25][새내기라면 한번쯤은 해보면 좋을 것] 0
대학커뮤니티 노크에서 선발한 성균관대 선배가 오르비에 있는 예비 성균관대학생,...
-
영남대는 통학이고, 명지대는 기숙사 가야할 듯 합니다. 취업까지 생각했을 때,...
-
도와준다 내가.
-
제발
-
얘 때매 지각임 암튼 그럼
-
시발점?? 3
공통은 아이디어 현강 가서 김기현쌤 커리 탈건데여 미적은 겨울에 시발점부터 해서...
-
내 정체를 알면 2
쪽지ㄱ
-
ㅈㄱㄴ
-
중대 문과 770인데 상경이랑 20점가까이 차이남 띠용
-
에리카약 쓰는게 맞나요? 약대 하나 지르고싶은데 나군에 적당한게없네;;
-
가나다 445 넣으면 전 잠 못자고 앓게 될까요..? 지금 상황으로는 5칸 넣는 곳...
-
설대 내신 4
모의수능 국어1컷 수학 미적 100 내신 cc라 (검정고시) 사탐으로 설자전이...
-
어차피 작년이고 수시로 붙었어서 의미없지만 작수기준 화미생지 95 96 2 88...
-
우리나라를 멱살잡고 끌어올려준 세 분
-
설경 특) 4
설경제 다니는 사람은 경제라고 하고 설경영 다니는 사람은 경영이라고 함 전 그냥...
-
발빠른 日…"손정의, 트럼프 만나 1,000억 달러 투자 발표" 0
[서울경제] 손정의 일본 소프트뱅크그룹 회장이 16일(현지 시간) 1000억...
-
맞팔구 뒷삭러들 5
검거 완.
-
서울아산병원서 국내 최초 생체 간이식 받은 아기, “30살 됐어요” 0
누적 생체 간이식 7000례 넘어 세계 최다 30년 전 선천성 담도 폐쇄증에 따른...
-
믿을만함?
-
쬰아침 2
ㅇ
-
화력 무슨 일이야 다들! 비사아아아아앙!
-
웁스바리동동 어디선가 주워들은 거인데요를레이
-
돌려야지...
-
옯인싸 등장 7
늦잠 자따뇨잇웁스바리동동
-
대충 건국대 경희대 추합권인데 중앙대 낮과 스나해볼까
일반청님 죠아 헤헿
ㅎㅅㅎ... 요즘 매우 바빴어요. 간간히 올릴게
초록글로 가세요
헿 갈거양 ㅋㅋㅋㅋ
나 그래도 저번보다 신박한 주제 갖고왔어요 많이봐요.
문과는 울겠지만.. 그래도
이차함수를 회전시켰을 뿐인데 달라지넹..
ㅍㅍ해야지
커여어~
변곡점아니지안나융
네
글구 함수가아닌데 변곡 따지는게 의미가업지안나융
개이득....
그렇다면 기하와 벡터는 무엇을 하는 과목일까요!
이차곡선과 평면벡터, 공간도형 공간벡터!
함수라는 전제가 있어야한다.
x->y로 보면 함수가 아니다.
y->x로 보면 함수이다.
y->x로 보면 이차함수이다.
이차함수는 실수(y) 전체에서 아래로 볼록이므로 변곡점이 존재할 수 없다.
하... 정말 답 쉽죠..ㅠㅠ 몇분만에 털려버리네
기하와 벡터는 무엇을 하는 과목일까요!
정말 어려운 질문이네요 ㅋㅋㅋ
16학년도까지는 일차변환 단원을 보면
말 그대로 미적분과 거의 관련 없이 기하에만 초점을 둔 것 같습니다.
수능문제도 행렬 연산과 관련된 문제는 3점으로 출제가 많이 되었고
회전변환, 닮음변환과 관련된 문제가 4점으로 많이 나왔죠.
2013학년도 수능 9번은 행렬 연산으로만 접근하면 풀이가 매우 길어지지만 도형의 이동 상황 중심으로 조금만 생각하면 굉장히 식이 단축되어서
기하와 벡터 학습의 목적을 잘 나타내는 문제인 것 같아요.
17학년도부터는 음함수 미분, 매개변수 미분 등등 미적분 요소가 추가 되어서 미적분과 관련이 없다고 할 수는 없는 것 같아요.
미적분은 증가와 감소, x에서 y로 인과관계의 기준이 정해져 있는 도구라면
기하와 벡터는 이를 깬 상태에서 순수한 기하 성질을 배우고(이차곡선)
혹은 새로운 기준을 정하고 각 성분들을 독립적 요소로 보면서 다르게 접근하는 과목? (벡터)
정말 바로 다음칼럼 쓰고싶네요 ㅋㅋㅋ
맞습니다. 하지만 한문장으로 설명할수잇지
그리고 왜 굳이 미분할 수 있는데 기하성질 배워야하나여!
걍 식나오면 미분때려버리면 안되나
함수는 뭐고 그러면 도형은 뭘까요?
함수는 "규칙이 있는 대응관계"이고, 도형은 "그냥 대응관계"입니다. 다른 얘기까지 하려면 어어어엄청 길어지니까 하나만 짚자면, 함수는 도형의 부분집합입니다.
규칙이 있는 대응관계라는 말에 동의합니다.
즉, 알고보면 도형이 더 큰 집합이라는 것입니다. 이 사실이 갖는 의미는 무엇이냐면, 미적분에서 우리가 미분을 배운 이유는 우리가 머릿속에서 그려지지 않는 함수들을 그려보기 위함이었듯, 도형도 우리가 머릿속에서 그려지지 않는 "도형"들을 그릴 수 있어야 한다는 것입니다.
(뭐 꼭 미분이 그렇다는 것이 아니고, 그냥 일부분만 떼어서 생각한 겁니다. 미분이라는 도구가 꼭 "작도"를 위해서 생긴 도구라고 말하는 것이 아님을 밝히겠습니다.) 따라서 우리는 함수처럼 도형도 그 생김새를 정확히 알아야 하는 필연성이 생깁니다. 그래서 굳이 기하와 벡터에서 음함수의 미분법, 매개변수의 미분법을 따로 떼어서 배우는 것이지요
그렇담 벡터는 왜 배우는 것이냐... 저도 아직 고2인지라 잘은 모르지만, 요약해서 말씀드리자면, 벡터는 기하적 해석에 필요한 도구이고, 기하적 해석을 하는 이유는 "모르는 것, 상상도 안되는 것"을 표현하기 위해서 입니다. 뭐.,,.. 앞의 말과 같은 이야기지요. 하지만 이러한 논리적 필요성이 저는 중요하다고 봅니다.
정리하면, 벡터는, 함수를 포함하는 도형을 나타내기 위해서 만들어진 것입니다. 허어ㅓ, 이것에 대해서도 설명해 드려야 하지만, 이것도 쓸려면 엄청 길기 때문에 줄이겠습니다. 하지만, 벡터는 도형을 표현한다, 움직임을 표현한다, 점, 선, 면을 포함한다는 것에 정말 중요한 도구라는 것은 확실합니다. (몇 번 말하는 건지 모르겠지만) 따라서 우리는 벡터를 배우고 그것으로 도형을 표현하는 것이 정말 중요한 목적이라는 것입니다.
이것으로 보면, 공간벡터, 공간도형 역시 무엇을 하는 학문인지에 대한 의문이 없어집니다. 왜냐, 우리가 사는 세상은 가로, 세로, 위아래, 그리고 시간이라는 총 4개의 차원으로 이루어진 4차원 세계이기 때문에, 4차원의 축은 아직까지는 몰라도, 적어도 3차원에서의 기하적 해석을 할 줄 알아야 하는 필연성이 생깁니다. 따라서 우리는 공간도형에서 어떻게 하면 선의 위치를 결정하는지, 점의 위치를 결정하는지, 면의 위치를 결정하는지 알 수 있는 것입니다. 공간벡터도 뭐,,, 위와 같은 이유로 필요성이 생깁니다.
총정리하자면, 우리는 함수말고도, 도형을 표현할 줄 알아야 하는데, 우리는 지금까지 함수만 해석의 대상으로 여겼으니, 이제는 음함수 미분법, 매개변수 미분법으로, 함수가 아닌 것을 미분하여 개형을 알아내고, 벡터를 통해 위치관계를 표현하고 또한 이제는 2차원이 아닌 3차원의 좌표계를 사용하여, 궁극적으로 자연계에 존재하는 모든 것들을 "해석"할 수 있도록 하기 위해 기하와 벡터를 배우는 것이라고 결론 내릴 수 있습니다.
저기 닉넴의 의미가 뭔가요?ㅎㅎ
저는 처음에는 그냥 보통사람의 뭔가 평범한 즐거움이라 지었고
그냥 일상의 즐거움이라 생각하시면 될것같아요.
일반좋아 >_<
ㅎㅅㅎ
ㅇㄷ
원점요
다음 주제는 기벡과 미적분의 차이점에 대해 다루는 건가요? 올라온다면 기대하고 있을게요! 제가 자주 호기심 가졌던 부분이거든요ㅋㅋㅋ
해설은 그것에 대해 말씀드리고자 합니다.
그리고 그 답은 사실 저 문제에 있음
22번하고 그 밑에 문제까지 둘 다 칼개념에서 풀었던거당 갓영진 풀이 짱
저 차영진 선생님 잘 모르는데 소문은 들었습니다.
근데, 더 정확하고 깊게 설명할 수 있을걸요?ㅋㅋ
다음칼럼 주제도 생각해보셔요 ㅋㅋ
네 맞아요 22번 저거는 마침 어제 풀었던건데 40분동안 5가지정도? 방법으로 풀이해주시더라구요
팔로우 하겠습니다 칼럼 잘 챙겨볼게용ㅎㅎ
헐? 5가지 방법이 필요한가여 ㅋㅋㅋㅋㅋ
5가지 방법중에 개념을 정확하게 적용하는 풀이를 기억하고
개념과 함께 연결해주시면 될것같아요.
잘 읽고 갑니다 너무 고마워요 ㅎㅎ
감사합니다
잘 읽고 갑니다. 그리고 문송합니다.
죄송합니당..ㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠ
오오..저 벡터가 약해서..저런 문제 보면 슬퍼짐...
ㅠㅠㅠ 힘을내요.
정독하고 저 아래 문제에 대한 생각해보셔요
그래프 그리고 넓이 구하는 게 미적의 목적이라면 너무나 김빠지는 답이네요
기벡에 대해서도 그런 설명을 요구하시는 건지요
일단 대략적인 기능을 적었습니다.
미적분1의 목차에서는
수열의 극한
함수의 극한과 연속 이것들은 미적분 개념의 선수학습.
미분계수와 도함수
이 단원에서 미분계수와 접선, 미분가능과 도함수를 배웠고
또한 접선의 방정식, 평균값의 정리와 그를통한 증가와 감소, 극대와 극소, 함수의 그래프와 방정식과 미분, 속도와 가속도를 논했습니다.
결국 고교과정에서 미분의 기능중 가장 중요한것은 그래프 그리는것이죠.
적분법에서는 부정적분과 구분구적법으로 이어지는 정적분을 배웠으며 미적분학의 기본정리가 나옵니다.
그것으로 우리는 넓이를 구할 수 있었죠.
미적분 1에서의 미적분의 역할은 넓이를 구하고 그래프를 그리는것이라 요약할 수 있습니다.