7모 미적 손풀이(27, 28, 29, 30)
7모 미적 손풀이.pdf
미진한 실력이지만 올려봅니다.
보충설명을 조금 하자면,
28번은 역함수가 존재하는 삼차함수라고 하였으므로 x^3의 평행이동꼴을 강하게 의심할 수 있습니다. 이것의 논리적 정당화는 다음과 같습니다.
최대 최소를 구하려면 부등식이 필요함 -> 가능한 부등식은 판별식 뿐임 -> 판별식의 경계에서는 x^3 평행이동 꼴임
이렇게 생각하고 빠르게 해결한 뒤 불안하다면 검산하는 것이 좋아보입니다.
29번은 등비수열에 절댓값이 붙은 것을 보고 r<0라는 강한 의심을 할 수 있습니다. 물론 두 급수를 더한 값이 0이라는 시점에서 r>0일 수 없음을 빠르게 파악하는 것이 최선입니다.
삼차방정식에서 뻔히 보이는 한 근이 있다면 다음과 같이 인수분해하는 것도 가능합니다.
20r^3+21r^2-1=(r+1)(20r^2 + -1)로 쓰고, 나머지 빈 항을 r^2의 계수를 이용해 맞춰주면 됩니다. 대부분 경우에서 조립제법보다 약간 빠른 것 같습니다.
마지막 급수의 수렴판단은 결국 '3x(-1)^(n-1)+어떤 등비수열'이 수렴하도록 하는 문제인데, 3x(-1)^(n-1)이 폭이 줄어들지 않고 진동하고 있으므로 반대로 진동하는 등비수열을 더해줄 수 밖에 없습니다.
30번은 적분할 수 없음을 판단하고 행동에 옮긴다면 빠르게 풀 수 있었을 것 같습니다. 그리고 간단하게 보이는 치환꼴이므로 치환해서 접근하면 조금 더 보기 편해지는 것 같습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
배꼽이 없단 걸 의식하고 걱정하지 않으려고 용을 쓰는데 뜻대로 안되는 주인공처럼...
-
매운거먹고싶다 2
속이 근질근질하구먼
-
같은 팀원들 점수 깎인다고 걱정해주던데 ㄹㅇ 착한 도람쥐임....
-
"부처를 만나면 부처를 죽이고, 조사를 만나면 조사를 죽일 것이며, 아라한을 만나면...
-
오늘 안 상식 2
베르무트는 와인이라서 냉징보관을 해야한다
-
알바가기 귀찬아 2
ㄹㅇ그냥 퍼질러자고싶음
-
낼모레는 가네
-
얼버기 5
-
이제 자러가야지 1
좋은 밤 되세요
-
하지만 잇올을 간당
-
ㅇㅂㄱ 6
-
5~6등급인데 션티 들으려고합니다.
-
밖에나가서 공부할라믄 돈이드니까 돈을 최대한아끼려면 집에서 공부해야하는데 집에서는...
-
얼버기 5
갓생 1일차.
-
얼버그 0
얼버그는 얼버기와 레버기에 잡혀먹는다
-
얼버기 3
출근중입니다
-
내가 팔로우해줌 ㅇㅇ
-
오늘 일정 2
8:00 ~ 22:00 : 잇올 22:00 ~ 00:00 : 오르비 및 운동 이후 취침 씹갓생 ㄹㅇ
-
유빈 0
시냅스 수2 답지 올리라고!!!!
-
기차지나간당 4
부지런행
-
확통 미적 고민 10
국어랑 탐구(사탐런 예정)에 시간을 많이 써야되는 상황에서 확통 -4점(다 맞을...
-
전 게이가 아닙니다.
-
ㅈㅅㅎㄴㄷ 5
지금까지 광명상가의 가를 가천대로 알았어요
-
오늘 계획 3
미용실 다녀오기 오르비하기
-
내년에 서울가서 재회하기로
-
만약에 본인이 내년에 26학번으로 입학인데 현역이라는 가정하에 같은 26학번이...
-
전 결혼도 하고싶은데 여자는 특히 결혼할때 나이가 중요하니까 너무 불안하네요
-
나중에 결국 '에이 걍 안가고 말지' 이런마인드로 바뀌면서 의욕떨어지는데 목표를...
-
하..... 여자되고싶다
-
얼버기 2일차 0
-
딱히 진로를 정하진 못했는데 이번에 아주대 전자(자전),미랴모빌리티 두개 넣어서...
-
초딩때 무지성으로 헤헤 최형우 머시따 하면서 볼때는 몰랐는데 수능끝나고 제대로 파니까 개복잡함
-
밝은척하면서 은근슬쩍 까는거+비틱질 역겨워죽게슴 소신발언
-
얼버기 2
-
스카가야지
-
잠이 2
-
지금 안정은 숙대고 홍대도 냈는데 일단 숙대를 가기로 마음을...
-
수면패턴ㅋ.. 2
수면패턴 바꿀거라고 지금 밤샜는데 몽롱하고 그냥 자고싶은데 여기서 자면...
-
얼버기 4
-
진짜 미치겠다
-
그냥 26수능으로 sky를 가야겠다 마음먹어
-
제자야 기상해라 1
학원가야지 에휴
-
자야지 1
-
ㅋㅋ
-
게임을안하니까 1
인생이꽤쾌적하네
-
진짜 찐찐 잠 0
ㅈ
-
쿠팡.. 시간빨리갔으면좋게ㅛ다..
-
엄마한테 재수할동안 교정이나해달라고할까
-
잘자 3
바이
고트
27번은 적분상수 -1을 붙여서 적분하면 편하더라고요
28번 논리적 정당화에 대해 제가 이해한 것이 맞는지 확인해주시면 감사하겠습니다.
최고차1인 3차함수가 역함수를 갖는다<=> f'(x)>=0
f'(0)가 최대가 될 때를 구하려면 등호포함 부등식을 찾아야하는데 생성가능한 부등식은 이차함수의 판별식이고, 최소가 0이다.
도함수의 최소(극소)인 변곡점의 기울기가 0인 x^3의 평행이동 꼴이다.
라고 생각한 것이 맞을까요?
네 맞습니다
감사합니다!